Skip to main content
Log in

Characterization of a tannin acyl hydrolase from Streptomyces sviceus with substrate preference for digalloyl ester bonds

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The search for new tannases with novel enzymatic properties suitable for industrial applications has been a continuous effort since the first discovery of the enzyme more than a century ago. A tannase gene (Ss-Tan) from the Gram-positive bacterium Streptomyces sviceus was identified, chemically synthesized, and cloned into a C-terminal His-tagged vector for expression in Escherichia coli. The tannase possesses the active site motif of GXSXG that is conserved for serine hydrolases. The residues that constitute the catalytic triad and galloyl binding site in bacterial tannases are found conserved in Ss-Tan, which include Ser209, Asp452, His484 and Lys370, Glu384, Asp454, respectively. Ss-Tan was overexpressed in E. coli BL21-AI cells with high productivity. Enzymatic assay revealed that the enzyme displays tannase activities to hydrolyze both the ester bonds and depside bonds in hydrolyzable tannins. Kinetic analysis indicated that the enzyme preferentially acts on depside bonds with considerably higher substrate affinity and catalytic efficiency. The enzyme showed maximum activity around pH 8.0 and at 50 °C with the highest melting temperature close to 70 °C. The high depsidase activity and thermostablility of Ss-Tan may make the enzyme suitable for potential industrial applications to achieve complete digestion of hydrolyzable tannins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilar CN, Gutierrez-Sanchez G (2001) Review: sources, properties, applications and potential uses of tannin acyl hydrolase. Food Sci Technol Int 7:373–382

    Article  CAS  Google Scholar 

  • Aguilar CN, Rodríguez R, Gutiérrez-Sánchez G, Augur C, Favela-Torres E, Prado-Barragan LA, Ramírez-Coronel A, Contreras-Esquivel JC (2007) Microbial tannases: advances and perspectives. Appl Microbiol Biotechnol 76:47–59

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18:6069–6074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bagos PG, Nikolaou EP, Liakopoulos TD, Tsirigos KD (2010) Combined prediction of Tat and Sec signal peptides with hidden Markov models. Bioinformatics 26:2811–2817

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Jana A, Pati BR, Mondal KC, Das Mohapatra PK (2012) Characterization of tannase protein sequences of bacteria and fungi: an in silico study. Protein J 31:306–327

    Article  CAS  PubMed  Google Scholar 

  • Boadi DK, Neufeld RJ (2001) Encapsulation of tannase for the hydrolysis of tea tannins. Enzyme Microb Technol 28:590–595

    Article  CAS  PubMed  Google Scholar 

  • Böer E, Breuer FS, Weniger M, Denter S, Piontek M, Kunze G (2011) Large-scale production of tannase using the yeast Arxula adeninivorans. Appl Microbiol Biotechnol 92:105–114

    Article  PubMed  Google Scholar 

  • Chater KF, Biró S, Lee KJ, Palmer T, Schrempf H (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34:171–198

    Article  CAS  PubMed  Google Scholar 

  • Curiel JA, Rodríguez H, Acebrón I, Mancheño JM, de las Rivas B, Muñoz R (2009) Production and physicochemical properties of recombinant Lactobacillus plantarum tannase. J Agric Food Chem 57:6224–6230

    Article  CAS  PubMed  Google Scholar 

  • Farias GM, Gorbea C, Elkins JR, Griffin GJ (1994) Purification, characterization, and substrate relationships of the tannase from Cryphonectria parasitica. Physiol Mol Plant Pathol 44:51–63

    Article  CAS  Google Scholar 

  • Haslam E, Stangroom JE (1966) The esterase and depsidase activities of tannase. Biochem J 99:28–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hatamoto O, Watarai T, Kikuchi M, Mizusawa K, Sekine H (1996) Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae. Gene 175:215–221

    Article  CAS  PubMed  Google Scholar 

  • He F, Hogan S, Latypov RF, Narhi LO, Razinkov VI (2010) High throughput thermostability screening of monoclonal antibody formulations. J Pharm Sci 99:1707–1720

    CAS  PubMed  Google Scholar 

  • Hodgson DA (2000) Primary metabolism and its control in Streptomycetes: a most unusual group of bacteria. Adv Microb Physiol 42:47–238

    Article  CAS  PubMed  Google Scholar 

  • Inoue KH, Hagerman AE (1988) Determination of gallotannin with rhodanine. Anal Biochem 169:363–369

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto K, Tsuruta H, Nishitaini Y, Osawa R (2008) Identification and cloning of a gene encoding tannase (tannin acylhydrolase) from Lactobacillus plantarum ATCC 14917(T). Syst Appl Microbiol 31:269–277

    Article  CAS  PubMed  Google Scholar 

  • Jiménez N, Barcenilla JM, de Felipe FL, de las Rivas B, Munoz R (2014a) Characterization of a bacterial tannase from Streptococcus gallolyticus UCN34 suitable for tannin biodegradation. Appl Microbiol Biotechnol 98:6329–6337

    Article  PubMed  Google Scholar 

  • Jiménez N, Esteban-Torres M, Mancheño J, de las Rivas B, Munoz R (2014b) Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains. Appl Environ Microbiol 80:2991–2997

    Article  PubMed Central  PubMed  Google Scholar 

  • Khanbabaee K, van Ree T (2001) Tannins: classification and definition. Nat Prod Rep 18:641–649

    Article  CAS  PubMed  Google Scholar 

  • Knudson L (1913) Tannic acid fermentation. I. J Biol Chem 3:159–184

    Google Scholar 

  • Kumar S, Tsai CJ, Nussinov R (2000) Factors enhancing protein thermostability. Protein Eng 13:179–191

    Article  CAS  PubMed  Google Scholar 

  • Lekha PK, Lonsane BK (1997) Production and application of tannin acyl hydrolase: state of the art. Adv Appl Microbiol 44:215–260

    Article  CAS  PubMed  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Lu MJ, Chu SC, Yan L, Chen C (2009) Effect of tannase treatment on protein-tannin aggregation and sensory attributes of green tea infusion. LWT-Food Sci Technol 42:338–342

    Article  CAS  Google Scholar 

  • Mizuguchi K, Sele M, Cubellis MV (2007) Environment specific substitution tables for thermophilic proteins. BMC Bioinformatics 8:S15. doi:10.1186/1471-2105-8-S1-S15

    Article  PubMed Central  PubMed  Google Scholar 

  • Niehaus JU, Gross GG (1997) A gallotannin degrading esterase from leaves of pedunculate oak. Phytochemistry 45:1555–1560

    Article  CAS  Google Scholar 

  • Nierenstein M (1930) Galls. Nature 125:348–349

    Article  CAS  Google Scholar 

  • Noguchi N, Ohashi T, Shiratori T, Narui K, Hagiwara T, Ko M, Watanabe K, Miyahara T, Taira S, Moriyasu F, Sasatsu M (2007) Association of tannase-producing Staphylococcus lugdunensis with colon cancer and characterization of a novel tannase gene. J Gastroenterol 42:346–351

    Article  CAS  PubMed  Google Scholar 

  • Ow Y-Y, Stupans I (2003) Gallic acid and gallic acid derivatives: effects on drug metabolizing enzymes. Curr Drug Metab 4:241–248

    Article  CAS  PubMed  Google Scholar 

  • Ren B, Wu M, Wang Q, Peng X, Wen H, McKinstry WJ, Chen Q (2013) Crystal structure of tannase from Lactobacillus plantarum. J Mol Biol 425:2737–2751

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Durán LV, Valdivia-Urdiales B, Contreras-Esquivel JC, Rodríguez-Herrera R, Aguilar CN (2011) Novel strategies for upstream and downstream processing of tannin acyl hydrolase. Enzyme Res 2011:823619

    Article  PubMed Central  PubMed  Google Scholar 

  • Sayers EW, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, Feolo M, Geer LY, Helmberg W, Kapustin Y, Landsman D, Lipman DJ, Madden TL, Maglott DR, Miller V, Mizrachi I, Ostell J, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Souvorov A, Starchenko G, Tatusova TA, Wagner L, Yaschenko E, Ye J (2009) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 37:5–15

    Article  Google Scholar 

  • Seabrook SA, Newman J (2013) High-throughput thermal scanning for protein stability: making a good technique more robust. ACS Comb Sci 15:387–392

    Article  CAS  PubMed  Google Scholar 

  • Sharma KP, John PJ (2011) Purification and characterization of tannase and tannase gene from Enterobacter sp. Process Biochem 46:240–244

    Article  CAS  Google Scholar 

  • Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390

    Article  CAS  PubMed  Google Scholar 

  • Widdick DA, Dilks K, Chandra G, Bottrill A, Naldrett M, Pohlschröder M, Palmer T (2006) The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor. Proc Natl Acad Sci U S A 103:17927–17932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu M, Peng X, Wen H, Wang Q, Chen Q, McKinstry WJ, Ren B (2013) Expression, purification, crystallization and preliminary X-ray analysis of tannase from Lactobacillus plantarum. Acta Crystallogr Sect F: Struct Biol Cryst Commun 69:456–459

    Article  CAS  Google Scholar 

  • Zhong X, Peng L, Zheng S, Sun Z, Ren Y, Dong M, Xu A (2004) Secretion, purification, and characterization of a recombinant Aspergillus oryzae tannase in Pichia pastoris. Protein Expr Purif 36:165–169

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the CSIRO Materials Science and Engineering Bioscience Program and CSIRO Transformational Biology Capability Platform for enhancing recombinant protein production. We thank the Structural Genomics Consortium for the provision of the pNIC-CH cloning vector and Dr. Shane Seabrook for performing DSF. MW visit to CSIRO was supported by the China Scholarship Council (CSC).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ren.

Additional information

Author contributions

BR conceived the project. MW and QW performed the experiments under the supervision of BR and WJM. BR wrote the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Wang, Q., McKinstry, W.J. et al. Characterization of a tannin acyl hydrolase from Streptomyces sviceus with substrate preference for digalloyl ester bonds. Appl Microbiol Biotechnol 99, 2663–2672 (2015). https://doi.org/10.1007/s00253-014-6085-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6085-9

Keywords

Navigation