Skip to main content
Log in

Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biobutanol is a promising biofuel due to the close resemblance of its fuel properties to gasoline, and it is produced via acetone-butanol-ethanol (ABE) fermentation using Clostridium species. However, lignin in the crystalline structure of the lignin-cellulose-hemicellulose biomass complex is not readily consumed by the Clostridium; thus, pretreatment is required to degrade this complex. During pretreatment, some fractions of cellulose and hemicellulose are converted into fermentable sugars, which are further converted to ABE. However, a major setback resulting from common pretreatment processes is the formation of sugar and lignin degradation compounds, including weak acids, furan derivatives, and phenolic compounds, which have inhibitory effects on the Clostridium. In addition, butanol concentration above 13 g/L in the fermentation broth is itself toxic to most Clostridium strain(s). This review summarizes the current state-of-the-art knowledge on the formation of microbial inhibitors during the most common lignocellulosic biomass pretreatment processes. Metabolic effects of inhibitors and their impacts on ABE production, as well as potential solutions for reducing inhibitor formation, such as optimizing pretreatment process parameters, using inhibitor tolerant strain(s) with high butanol yield ability, continuously recovering butanol during ABE fermentation, and adopting consolidated bioprocessing, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdehagh N, Tezel FH, Thibault J (2014) Separation techniques in butanol production: challenges and developments. Biomass Bioenergy 60:222–246. doi:10.1016/j.biombioe.2013.10.003

    CAS  Google Scholar 

  • Almeida JRM, Karhumaa K, Bengtsson O, Gorwa-Grauslund MF (2009) Screening of Saccharomyces cerevisiae strains with respect to anaerobic growth in non-detoxified lignocellulose hydrolysate. Bioresour Technol 100:3674–3677. doi:10.1016/j.biortech.2009.02.057

    PubMed  CAS  Google Scholar 

  • Almeida RM, Modig T, Petersson A (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. 349:340–349. doi: 10.1002/jctb

  • Avci A, Saha BC, Kennedy GJ, Cotta MA (2013a) Dilute sulfuric acid pretreatment of corn stover for enzymatic hydrolysis and efficient ethanol production by recombinant Escherichia coli FBR5 without detoxification. Bioresour Technol 142C:312–319. doi:10.1016/j.biortech.2013.05.002

    Google Scholar 

  • Avci A, Saha BC, Kennedy GJ, Cotta MA (2013b) High temperature dilute phosphoric acid pretreatment of corn stover for furfural and ethanol production. Ind Crop Prod 50:478–484. doi:10.1016/j.indcrop.2013.07.055

    CAS  Google Scholar 

  • Baral NR, Li J, Jha AK (2014) Perspective and prospective of pretreatment of corn straw for butanol production. Appl Biochem Biotechnol 172:840–853. doi:10.1007/s12010-013-0548-9

    PubMed  CAS  Google Scholar 

  • Bondesson P-M, Galbe M, Zacchi G (2013) Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid. Biotechnol Biofuels 6:11. doi:10.1186/1754-6834-6-11

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bowles LK, Ellefson WL (1985) Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol 50:1165–1170

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cao G, Ren N, Wang A, Lee DJ, Guo W, Liu B, Feng Y, Zhao Q (2009) Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrog Energy 34:7182–7188. doi:10.1016/j.ijhydene.2009.07.009

    CAS  Google Scholar 

  • Chandel AK, Silva SS, Singh OV (2012) Detoxification of lignocellulose hydrolysates: biochemical and metabolic engineering toward white biotechnology. Bio Energy Res 6:388–401. doi:10.1007/s12155-012-9241-z

    Google Scholar 

  • Chen C, Blaschek H (1999) Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101. Appl Microbiol Biotechnol 52:170–173

    PubMed  CAS  Google Scholar 

  • Chen C, Xiao Z, Tang X, Cui H, Zhang J, Li W, Ying C (2013a) Acetone-butanol-ethanol fermentation in a continuous and closed-circulating fermentation system with PDMS membrane bioreactor. Bioresour Technol 128:246–251. doi:10.1016/j.biortech.2012.10.077

    PubMed  CAS  Google Scholar 

  • Chen Y, Stevens MA, Zhu Y, Holmes J, Xu H (2013b) Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol Biofuels 6:8. doi:10.1186/1754-6834-6-8

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cheng CL, Che PY, Chen BY, Lee WJ, Lin CY, Chang JS (2012) Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora. Appl Energy 100:3–9. doi:10.1016/j.apenergy.2012.05.042

    CAS  Google Scholar 

  • Cho DH, Lee YJ, Um Y, Sang BI, Kim YH (2009) Detoxification of model phenolic compounds in lignocellulosic hydrolysates with peroxidase for butanol production from Clostridium beijerinckii. Appl Microbiol Biotechnol 83:1035–1043. doi:10.1007/s00253-009-1925-8

    PubMed  CAS  Google Scholar 

  • Dadi AP, Varanasi S, Schall CA (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. doi: 10.1002/bit

  • Dibble DC, Li C, Sun L, George A, Cheng A, Çetinkol ÖP, Benke P, Holmes BM, Singh S, Simmons BA (2011) A facile method for the recovery of ionic liquid and lignin from biomass pretreatment. Green Chem 13:3255–3264

    CAS  Google Scholar 

  • Diirre P, Kuhn A, Gottwald M, Gottschalk G (1987) Applied microbiology biotechnology enzymatic investigations on butanol dehydrogenase and butyraldehyde dehydrogenase in extracts of Clostridium acetobutylicum. 268–272

  • DOE (2011) U.S. Billion-ton update: biomass supply for a bioenergy and bioproducts industry. U.S. Department of Energy. http://www1.eere.energy.gov/bioenergy/pdfs/billion_ton_update.pdf

  • Du B, Sharma LN, Becker C, Chen SF, Mowery RA, Walsum GP, Chambliss CK (2010) Effect of varying feedstock-pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates. Biotechnol Bioeng 107:430–440. doi:10.1002/bit.22829

    PubMed  CAS  Google Scholar 

  • Du TF, He AY, Wu H, Chen JN, Kong XP, Liu JL, Jiang M, Ouyang PK (2013) Butanol production from acid hydrolyzed corn fiber with Clostridium beijerinckii mutant. Bioresour Technol 135:254–261. doi:10.1016/j.biortech.2012.11.033

    PubMed  CAS  Google Scholar 

  • Dürre P (2008) Fermentative butanol production: bulk chemical and biofuel. Ann N Y Acad Sci 1125:353–362. doi:10.1196/annals.1419.009

    PubMed  Google Scholar 

  • Dusséaux S, Croux C, Soucaille P, Meynial-Salles I (2013) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture. Metab Eng 18:1–8. doi:10.1016/j.ymben.2013.03.003

    PubMed  Google Scholar 

  • EIA (2014) Retail motor gasoline and on-highway diesel fuel prices. U.S. Energy Information Administration. http://www.eia.gov/totalenergy/data/monthly/pdf/sec9_6.pdf

  • Ennis BM, Maddox IS (1985) Use of Clostridium acetobutylicum P262 for production of solvents from whey permetate. Biotechnol Lett 7:601–606

    CAS  Google Scholar 

  • Esteghlalian A, Hashimoto AG, Fenske JJ, Penner MH (1997) Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresour Technol 59(2):129–136

  • Ezeji T, Milne C, Price ND, Blaschek HP (2010) Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl Microbiol Biotechnol 85:1697–1712. doi:10.1007/s00253-009-2390-0

    PubMed  CAS  Google Scholar 

  • Ezeji T, Qureshi N, Blaschek HP (2007a) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97:1460–1469. doi:10.1002/bit

    PubMed  CAS  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2007b) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18:220–227. doi:10.1016/j.copbio.2007.04.002

    PubMed  CAS  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2013) Microbial production of a biofuel (acetone–butanol–ethanol) in a continuous bioreactor: impact of bleed and simultaneous product removal. Bioprocess Biosyst Eng 36(1):109–116

    PubMed  CAS  Google Scholar 

  • Feng L, Qin L, Liu Z, Dong C, Li B, Yuan Y (2014) Combined severity during pretreatment chemical and temperature on the saccharification of wheat straw using acids and alkalis of differing strength. BioResour 9:24–38

    CAS  Google Scholar 

  • Fenske JJ, Griffin DA, Penner MH (1998) Comparison of aromatic monomers in lignocellulosic biomass prehydrolysates. J Ind Microbiol Biotechnol 20:364–368. doi:10.1038/sj.jim.2900543

    CAS  Google Scholar 

  • Geng X, Henderson WA (2012) Pretreatment of corn stover by combining ionic liquid dissolution with alkali extraction. Biotechnol Bioeng 109:84–91

    PubMed  CAS  Google Scholar 

  • Gao K, Li Y, Tian S, Yang X (2012) Screening and characteristics of a butanol-tolerant strain and butanol production from enzymatic hydrolysate of NaOH-pretreated corn stover. World J Microbiol Biotechnol 28:2963–2971. doi:10.1007/s11274-012-1107-1

    PubMed  Google Scholar 

  • Gao K, Rehmann L (2014) ABE fermentation from enzymatic hydrolysate of NaOH-pretreated corncobs. Biomass Bioenergy 66:110–115. doi:10.1016/j.biombioe.2014.03.002

    CAS  Google Scholar 

  • García V, Päkkilä J, Ojamo H, Muurinen E, Keiski RL (2011) Challenges in biobutanol production: How to improve the efficiency? Renew Sustain Energy Rev 15:964–980. doi:10.1016/j.rser.2010.11.008

    Google Scholar 

  • Gheshlaghi R, Scharer JM, Moo-Young M, Chou CP (2009) Metabolic pathways of clostridia for producing butanol. Biotechnol Adv 27:764–781. doi:10.1016/j.biotechadv.2009.06.002

    PubMed  CAS  Google Scholar 

  • Green EM (2011) Fermentative production of butanol-the industrial perspective. Curr Opin Biotechnol 22:337–343. doi:10.1016/j.copbio.2011.02.004

    PubMed  CAS  Google Scholar 

  • Guo T, He A, Du T, Zhu D, Liang D, Jiang M, Wei P, Ouyang P (2013) Butanol production from hemicellulosic hydrolysate of corn fiber by a Clostridium beijerinckii mutant with high inhibitor-tolerance. Bioresour Technol 135:379–385. doi:10.1016/j.biortech.2012.08.029

    PubMed  CAS  Google Scholar 

  • Guo T, Tang Y, Zhang QY, Du T, Liang D, Jiang M, Ouyang P (2012) Clostridium beijerinckii mutant with high inhibitor tolerance obtained by low-energy ion implantation. J Ind Microbiol Biotechnol 39:401–407. doi:10.1007/s10295-011-1017-5

    PubMed  CAS  Google Scholar 

  • Harun MY, Dayang Radiah AB, Zainal Abidin Z, Yunus R (2011) Effect of physical pretreatment on dilute acid hydrolysis of water hyacinth (Eichhornia crassipes). Bioresour Technol 102:5193–5199. doi:10.1016/j.biortech.2011.02.001

    PubMed  CAS  Google Scholar 

  • Hasunuma T, Okazaki F, Okai N, Hara KY, Ishii J, Kondo A (2013) A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour Technol 135:513–522. doi:10.1016/j.biortech.2012.10.047

    PubMed  CAS  Google Scholar 

  • He Q, Chen H (2013) Improved efficiency of butanol production by absorbed lignocellulose fermentation. J Biosci Bioeng 115:298–302. doi:10.1016/j.jbiosc.2012.09.017

    PubMed  CAS  Google Scholar 

  • Hu R, Lin L, Liu T, Liu S (2010) Dilute sulfuric acid hydrolysis of sugar maple wood extract at atmospheric pressure. Bioresour Technol 101:3586–3594. doi:10.1016/j.biortech.2010.01.005

    PubMed  CAS  Google Scholar 

  • Ibraheem O, Ndimba BK (2013) Molecular adaptation mechanisms employed by ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds. Int J Biol Sci 9:598–612. doi:10.7150/ijbs.6091

    PubMed  PubMed Central  Google Scholar 

  • Jang Y, Lee JY, Lee J (2012) Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. Am Soc Microbiol 3:1–9. doi:10.1128/mBio.00314-12.Updated

    Google Scholar 

  • Jiang M, Chen J, He A, Wu H, Kong X, Liu J, Yin C, Chen W, Chen P (2014) Enhanced acetone/butanol/ethanol production by Clostridium beijerinckii IB4 using pH control strategy. Process Biochem. doi:10.1016/j.procbio.2014.04.017

    Google Scholar 

  • Jin C, Yao M, Liu H, Lee CF, Ji J (2011) Progress in the production and application of n-butanol as a biofuel. Renew Sustain Energy Rev 15:4080–4106. doi:10.1016/j.rser.2011.06.001

    CAS  Google Scholar 

  • Jurgens G, Survase S, Berezina O, Sklavounos E, Linnekoski J, Kurkijärvi A, Väkevä M, Van Heiningen A, Granström T (2012) Butanol production from lignocellulosics. Biotechnol Lett. doi:10.1007/s10529-012-0926-3

    PubMed  Google Scholar 

  • Kim TH, Kim JS, Sunwoo C, Lee Y (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90:39–47. doi:10.1016/S0960-8524(03)00097-X

    PubMed  CAS  Google Scholar 

  • Kim TH, Lee YY (2005a) Pretreatment of corn stover by soaking in aqueous ammonia. Appl Biochem Biotechnol 121:1119–1132

    PubMed  Google Scholar 

  • Kim TH, Lee YY (2005b) Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresour Technol 96:2007–2013. doi:10.1016/j.biortech.2005.01.015

    PubMed  CAS  Google Scholar 

  • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26. doi:10.1007/s00253-004-1642-2

    PubMed  CAS  Google Scholar 

  • Kumar D, Murthy GS (2011) Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol Biofuels 4:27. doi:10.1186/1754-6834-4-27

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kumar M, Gayen K (2011) Developments in biobutanol production: new insights. Appl Energy 88:1999–2012. doi:10.1016/j.apenergy.2010.12.055

    CAS  Google Scholar 

  • Kumar M, Goyal Y, Sarkar A, Gayen K (2012) Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks. Appl Energy 93:193–204. doi:10.1016/j.apenergy.2011.12.079

    CAS  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729. doi:10.1021/ie801542g

    CAS  Google Scholar 

  • Lee J, Jang Y-S, Choi SJ, Im JA, Song H, Cho JH, Seung DY, Papoutsakis ET, Bennett GN, Lee SY (2012) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation. Appl Environ Microbiol 78:1416–1423. doi:10.1128/AEM.06382-11

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee S, Cho MO, Park CH, Chung Y, Kim JH (2008) Continuous butanol production using suspended and immobilized Clostridium beijerinckii NCIMB 8052 with supplementary butyrate. Energy Fuel 22:3459–3464

    CAS  Google Scholar 

  • Li C, Cheng G, Balan V, Kent MS, Ong M, Chundawat SP, Melnichenko YB, Dale BE, Simmons BA, Singh S (2011) Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresour Technol 102:6928–6936

    PubMed  CAS  Google Scholar 

  • Li J, Baral NR, Jha AK (2014) Acetone-butanol-ethanol fermentation of corn stover by Clostridium species: present status and future perspectives. World J Microbiol Biotechnol 30:1145–1157. doi:10.1007/s11274-013-1542-7

    PubMed  CAS  Google Scholar 

  • Li L, Ai H, Zhang S, Li S, Liang Z, Wu ZQ, Yang ST, Wang JF (2013) Enhanced butanol production by coculture of Clostridium beijerinckii and Clostridium tyrobutyricum. Bioresour Technol 143:397–404. doi:10.1016/j.biortech.2013.06.023

    PubMed  CAS  Google Scholar 

  • Lin Y, Blaschek HP (1983) Butanol production by a butanol-tolerant strain of extruded corn broth butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth. Appl Environ Biotechnol 45:966–973

    CAS  Google Scholar 

  • Lin Y, Wang J, Wang X, Sun X (2011) Optimization of butanol production from corn straw hydrolysate by Clostridium acetobutylicum using response surface method. Chin Sci Bull 56:1422–1428. doi:10.1007/s11434-010-4186-0

    CAS  Google Scholar 

  • Liu Z, Ying Y, Li F, Ma C, Xu P (2010) Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J Ind Microbiol Biotechnol 37:495–501. doi:10.1007/s10295-010-0695-8

    PubMed  CAS  Google Scholar 

  • Liu ZH, Qin L, Jin MJ, Pang F, Li BZ, Kang Y, Dale BE, Yuan YJ (2013a) Evaluation of storage methods for the conversion of corn stover biomass to sugars based on steam explosion pretreatment. Bioresour Technol 132:5–15. doi:10.1016/j.biortech.2013.01.016

    PubMed  CAS  Google Scholar 

  • Liu ZH, Qin L, Pang F, Jin MJ, Li BZ, Kang Y, Dale BE, Yuan YJ (2013b) Effects of biomass particle size on steam explosion pretreatment performance for improving the enzyme digestibility of corn stover. Ind Crops Prod 44:176–184. doi:10.1016/j.indcrop.2012.11.009

    CAS  Google Scholar 

  • Lloyd TA, Wyman CE (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 96:1967–1977. doi:10.1016/j.biortech.2005.01.011

    PubMed  CAS  Google Scholar 

  • Lütke-Eversloh T (2014) Application of new metabolic engineering tools for Clostridium acetobutylicum. Appl Microbiol Biotechnol 98:5823–5837

    PubMed  Google Scholar 

  • Lütke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22:634–647. doi:10.1016/j.copbio.2011.01.011

    PubMed  Google Scholar 

  • Lynd LR, Weimer PJ, VanZyl WH, Isak S, Lynd LR, Weimer PJ, Pretorius IS (2002) Microbial cellulose utilization :fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577. doi:10.1128/MMBR.66.3.506

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583. doi:10.1016/j.copbio.2005.08.009

    PubMed  CAS  Google Scholar 

  • Maddox IS, Qureshi N, Roberts-Thomson IS (1995) Production of acetone-butanol-ethanol from concentrated substrates using Clostridium acetobutylicum in an integrated fermentation-product removal process. 30:209–215

  • Maddox IS, Steiner E, Hirsch S, Wessner S, Gutierrez NA, Gapes JR, Schuster KC (2000) The cause of “acid-crash” and “acidogenic fermentations” during the batch acetone-butanol-ethanol (ABE-) fermentation process. J Mol Microbiol Biotechnol 2:95–100

    PubMed  CAS  Google Scholar 

  • Mariano AP, Filho RM, Ezeji TC (2012a) Energy requirements during butanol production and in situ recovery by cyclic vacuum. Renew Energy 47:183–187. doi:10.1016/j.renene.2012.04.041

    CAS  Google Scholar 

  • Mariano AP, Qureshi N, Maciel Filho R, Ezeji TC (2012b) Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation. J Chem Technol Biotechnol 87:334–340. doi:10.1002/jctb.2717

    CAS  Google Scholar 

  • Mills TY, Sandoval NR, Gill RT (2009) Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels 2:26. doi:10.1186/1754-6834-2-26

    PubMed  PubMed Central  Google Scholar 

  • Mitchell VD, Taylor CM, Bauer S (2013) Comprehensive analysis of monomeric phenolics in dilute acid plant hydrolysates. Bio Energy Res 7:654–669. doi:10.1007/s12155-013-9392-6

    Google Scholar 

  • Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96:1986–1993. doi:10.1016/j.biortech.2005.01.013

    PubMed  CAS  Google Scholar 

  • Mtui GYS (2012) Oxalic acid pretreatment, fungal enzymatic saccharification and fermentation of maize residues to ethanol. Afr J Biotechnol 11:843–851. doi:10.5897/AJB11.3032

    CAS  Google Scholar 

  • Mu X, Sun W, Liu C, Wang H (2011) Improved efficiency of separate hexose and pentose fermentation from steam-exploded corn stalk for butanol production using Clostridium beijerinckii. Biotechnol Lett 33:1587–1591. doi:10.1007/s10529-011-0598-4

    PubMed  CAS  Google Scholar 

  • Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10. doi:10.1016/j.biortech.2003.10.005

    PubMed  CAS  Google Scholar 

  • Ni Y, Sun Z (2009) Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biotechnol 83:415–423. doi:10.1007/s00253-009-2003-y

    PubMed  CAS  Google Scholar 

  • Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12(4):307–331

    PubMed  CAS  Google Scholar 

  • NREL (2011) Process design and economics for conversion of lignocellulosic biomass to ethanol. National Renewable Energy Laboratory. U.S. Department of Energy. http://www.nrel.gov/biomass/pdfs/51400.pdf

  • Öhgren K, Bura R, Lesnicki G, Saddler J, Zacchi G (2007) A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochem 42:834–839. doi:10.1016/j.procbio.2007.02.003

    Google Scholar 

  • Olson DG, McBride JE, Shaw AJ, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23:396–405. doi:10.1016/j.copbio.2011.11.026

    PubMed  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000a) Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33. doi:10.1016/S0960-8524(99)00161-3

    CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000b) Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification. Bioresour Technol 74:17–24

    CAS  Google Scholar 

  • Parekh M, Blaschek HP (1999) Butanol production by hypersolvent-producing mutant Clostridium beijerinckii BA101 in corn steep water medium containing maltodextrin. Biotechnol Lett 21:45–48

    CAS  Google Scholar 

  • Parekh M, Formanek J (1999) Pilot-scale production of butanol by Clostridium beijerinckii BA101 using a low-cost fermentation medium based on corn steep water. Appl Microbiol Biotechnol 51:152–157

    CAS  Google Scholar 

  • Parekh SR, Parekh RS, Wayman M (1988) Ethanol and butanol production by fermentation of enzymatically saccharified SO2-prehydrolysed lignocellulosics. Enzym Microb Technol 10:660–668

    CAS  Google Scholar 

  • Parisutham V, Kim TH, Lee SK (2014) Feasibilities of consolidated bioprocessing microbes: from pretreatment to biofuel production. Bioresour Technol 161C:431–440. doi:10.1016/j.biortech.2014.03.114

    Google Scholar 

  • Patakova P, Linhova M, Rychtera M, Paulova L, Melzoch K (2013) Novel and neglected issues of acetone-butanol-ethanol (ABE) fermentation by clostridia: Clostridium metabolic diversity, tools for process mapping and continuous fermentation systems. Biotechnol Adv 31:58–67. doi:10.1016/j.biotechadv.2012.01.010

    PubMed  CAS  Google Scholar 

  • Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320–328

    PubMed  CAS  Google Scholar 

  • Pordesimo LO, Hames BR, Sokhansanj S, Edens WC (2005) Variation in corn stover composition and energy content with crop maturity. Biomass Bioenergy 28:366–374. doi:10.1016/j.biombioe.2004.09.003

    CAS  Google Scholar 

  • Qin L, Liu ZH, Li BZ, Dale BE, Yuan YJ (2012) Mass balance and transformation of corn stover by pretreatment with different dilute organic acids. Bioresour Technol 112:319–326. doi:10.1016/j.biortech.2012.02.134

    PubMed  CAS  Google Scholar 

  • Qureshi N, Bowman MJ, Saha BC, Hector R, Berhow MA, Cotta MA (2012) Effect of cellulosic sugar degradation products (furfural and hydroxymethyl furfural) on acetone–butanol–ethanol (ABE) fermentation using Clostridium beijerinckii P260. Food Bioprod Process 90:533–540. doi:10.1016/j.fbp.2011.09.002

    CAS  Google Scholar 

  • Qureshi N, Cotta MA, Saha BC (2013a) Bioconversion of barley straw and corn stover to butanol (a biofuel) in integrated fermentation and simultaneous product recovery bioreactors. Food Bioprod Process 1–11. doi: 10.1016/j.fbp.2013.11.005

  • Qureshi N, Ezeji TC, Ebener J, Dien BS, Cotta MA, Blaschek HP (2008a) Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Bioresour Technol 99:5915–5922. doi:10.1016/j.biortech.2007.09.087

    PubMed  CAS  Google Scholar 

  • Qureshi N, Li XL, Hughes S, Cotta MA, Saha BC (2006) Butanol production from corn fiber xylan using Clostridium acetobutylicum. Biotechnol Prog 22:673–680. doi:10.1021/bp050360w

    PubMed  CAS  Google Scholar 

  • Qureshi N, Liu S, Ezeji TC (2013b) Cellulosic butanol production from agricultural biomass and residues: recent advances in technology. Advanced biofuels and bioproducts. Springer, New York, pp 247–265

    Google Scholar 

  • Qureshi N, Lolas A, Blaschek HP (2001a) Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101. J Ind Microbiol Biotechnol 26:290–295. doi:10.1038/sj/jim/7000131

    PubMed  CAS  Google Scholar 

  • Qureshi N, Meagher M, Huang J, Hutkins R (2001b) Acetone butanol ethanol (ABE) recovery by pervaporation using silicalite–silicone composite membrane from fed-batch reactor of Clostridium acetobutylicum. J Membr Sci 187:93–102. doi:10.1016/S0376-7388(00)00667-0

    CAS  Google Scholar 

  • Qureshi N, Saha BC, Cotta MA (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng 30:419–427. doi:10.1007/s00449-007-0137-9

    PubMed  CAS  Google Scholar 

  • Qureshi N, Saha BC, Cotta MA, Singh V (2013c) An economic evaluation of biological conversion of wheat straw to butanol: a biofuel. Energy Convers Manag 65:456–462. doi:10.1016/j.enconman.2012.09.015

    CAS  Google Scholar 

  • Qureshi N, Saha BC, Dien B, Hector R, Cotta MA (2010a) Production of butanol (a biofuel) from agricultural residues: Part I – use of barley straw hydrolysate. Biomass Bioenergy 34:559–565. doi:10.1016/j.biombioe.2009.12.024

    CAS  Google Scholar 

  • Qureshi N, Saha BC, Hector RE, Dien B, Hughes S, Liu S, Iten L, Bowman MJ, Sarath G, Cotta MA (2010b) Production of butanol (a biofuel) from agricultural residues: part II—use of corn stover and switchgrass hydrolysates. Biomass Bioenergy 34:566–571. doi:10.1016/j.biombioe.2009.12.023

    CAS  Google Scholar 

  • Qureshi N, Saha BC, Hector RE, Hughes S, Cotta MA (2008b) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part I—batch fermentation. Biomass Bioenergy 32:168–175. doi:10.1016/j.biombioe.2007.07.004

    CAS  Google Scholar 

  • Qureshi N, Saha BC, Hector RE, Cotta MA (2008c) Removal of fermentation inhibitors from alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors. Biomass Bioenergy 32:1353–1358. doi:10.1016/j.biombioe.2008.04.009

    CAS  Google Scholar 

  • Qureshi N, Singh V, Liu S, Ezeji TC, Saha BC, Cotta MA (2014) Process integration for simultaneous saccharification, fermentation, and recovery (SSFR): production of butanol from corn stover using Clostridium beijerinckii P260. Bioresour Technol 154:222–228. doi:10.1016/j.biortech.2013.11.080

    PubMed  CAS  Google Scholar 

  • Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871

    CAS  Google Scholar 

  • Ranjan A, Moholkar VS (2012) Biobutanol: science, engineering, and economics. Int J Energy Res 36(3):277–323. doi:10.1002/er

    CAS  Google Scholar 

  • Rasmussen H, Sørensen HR, Meyer AS (2014) Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms. Carbohydr Res 385:45–57. doi:10.1016/j.carres.2013.08.029

    PubMed  CAS  Google Scholar 

  • Saha BC, Yoshida T, Cotta MA, Sonomoto K (2013) Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Ind Crops Prod 44:367–372. doi:10.1016/j.indcrop.2012.11.025

    CAS  Google Scholar 

  • Schuster BG, Chinn MS (2012) Consolidated bioprocessing of lignocellulosic feedstocks for ethanol fuel production. Bio Energy Res 6:416–435. doi:10.1007/s12155-012-9278-z

    Google Scholar 

  • Setlhaku M, Heitmann S, Górak A, Wichmann R (2013) Investigation of gas stripping and pervaporation for improved feasibility of two-stage butanol production process. Bioresour Technol 136:102–108. doi:10.1016/j.biortech.2013.02.046

    PubMed  CAS  Google Scholar 

  • Shah A, Darr MJ, Webster K, Hoffman C (2011) Outdoor storage characteristics of single-pass large square corn stover bales in Iowa. Energ 4:1687–1695

    Google Scholar 

  • Shah A (2013) Techno-economic analysis and life cycle assessment of the corn stover biomass feedstock supply chain system for a Midwest-based first-generation cellulosic biorefinery. Dissertation, Iowa State University

  • Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16:950. doi:10.1039/c3gc41935e

    CAS  Google Scholar 

  • Shen J, Wyman CE (2011) A novel mechanism and kinetic model to explain enhanced xylose yields from dilute sulfuric acid compared to hydrothermal pretreatment of corn stover. Bioresour Technol 102:9111–9120. doi:10.1016/j.biortech.2011.04.001

    PubMed  CAS  Google Scholar 

  • Donghai SU, Junshe S, Ping L, Yanping L (2006) Effects of different pretreatment modes on the enzymatic digestibility of corn leaf and corn stalk. Chin J Chem Eng 14:796–801

    Google Scholar 

  • Swana J, Yang Y, Behnam M, Thompson R (2011) An analysis of net energy production and feedstock availability for biobutanol and bioethanol. Bioresour Technol 102:2112–2117. doi:10.1016/j.biortech.2010.08.051

    PubMed  CAS  Google Scholar 

  • Tao L, He X, Tan ECD, Zhang M, Aden A (2014a) Comparative techno-economic analysis and reviews of n-butanol production from corn grain and corn stover. Biofuels, Bioprod Biorefining 8(3): 342–361. doi:10.1002/bbb

    CAS  Google Scholar 

  • Tao L, Tan ECD, Mccormick R, Zhang M, Aden A, He X, Zigler BT (2014b) Techno-economic analysis and life-cycle assessment of cellulosic isobutanol and comparison with cellulosic ethanol and n-butanol. Biofuels, Bioprod Biorefining 8(1):30–48. doi:10.1002/bbb

    CAS  Google Scholar 

  • Taylor MP, Mulako I, Tuffin M, Cowan D (2012) Understanding physiological responses to pre-treatment inhibitors in ethanologenic fermentations. Biotechnol J 7:1169–1181. doi:10.1002/biot.201100335

    PubMed  CAS  Google Scholar 

  • Teghammar A, Yngvesson J, Lundin M, Taherzadeh MJ, Horváth IS (2010) Pretreatment of paper tube residuals for improved biogas production. Bioresour Technol 101:1206–1212. doi:10.1016/j.biortech.2009.09.029

    PubMed  CAS  Google Scholar 

  • Teymouri F, Laureano-Perez L, Alizadeh H, Dale BE (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol 96:2014–2018. doi:10.1016/j.biortech.2005.01.016

    PubMed  CAS  Google Scholar 

  • Ujor V, Agu CV, Gopalan V, Ezeji TC (2014) Glycerol supplementation of the growth medium enhances in situ detoxification of furfural by Clostridium beijerinckii during butanol fermentation. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-5802-8

    PubMed  Google Scholar 

  • Um B-H, van Walsum GP (2012) Effect of pretreatment severity on accumulation of major degradation products from dilute acid pretreated corn stover and subsequent inhibition of enzymatic hydrolysis of cellulose. Appl Biochem Biotechnol 168:406–420. doi:10.1007/s12010-012-9784-7

    PubMed  CAS  Google Scholar 

  • Uppugundla N, da Costa SL, Chundawat SP, Yu X, Simmons B, Singh S, Gao X, Kumar R, Wyman CE, Dale BE, Balan V (2014) A comparative study of ethanol production using dilute acid, ionic liquid and AFEXTM pretreated corn stover. Biotechnol Biofuels 7:72. doi:10.1186/1754-6834-7-72

    PubMed  PubMed Central  Google Scholar 

  • Varga E, Réczey K, Zacchi G (2004) Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility. Appl Biochem Biotechnol 113–116:509–523

    PubMed  Google Scholar 

  • Wang FQ, Xie H, Chen W, Wang ET, Du FG, Song AD (2013) Biological pretreatment of corn stover with ligninolytic enzyme for high efficient enzymatic hydrolysis. Bioresour Technol 144:572–578. doi:10.1016/j.biortech.2013.07.012

    PubMed  CAS  Google Scholar 

  • Wang L, Chen H (2011) Increased fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production by removal of fermentation inhibitors. Process Biochem 46:604–607. doi:10.1016/j.procbio.2010.09.027

    CAS  Google Scholar 

  • Wang S, Zhang Y, Dong H, Mao S, Zhu Y, Wang R, Luan G, Li Y (2011) Formic acid triggers the “Acid Crash” of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Appl Environ Microbiol 77:1674–1680. doi:10.1128/AEM.01835-10

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang Y, Blaschek HP (2011) Optimization of butanol production from tropical maize stalk juice by fermentation with Clostridium beijerinckii NCIMB 8052. Bioresour Technol 102:9985–9990. doi:10.1016/j.biortech.2011.08.038

    PubMed  CAS  Google Scholar 

  • Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E (2010) Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 87:1303–1315. doi:10.1007/s00253-010-2707-z

    PubMed  CAS  Google Scholar 

  • Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresour Technol 96:2026–2032. doi:10.1016/j.biortech.2005.01.018

    PubMed  CAS  Google Scholar 

  • Xue C, Zhao JB, Chen LJ, Bai FW, Yang ST, Sun JX (2014) Integrated butanol recovery for an advanced biofuel: current state and prospects. Appl Microbiol Biotechnol 98(8):3463–3474

    PubMed  CAS  Google Scholar 

  • Yang L, Cao J, Mao J, Jin Y (2013) Sodium carbonate–sodium sulfite pretreatment for improving the enzymatic hydrolysis of rice straw. Ind Crops Prod 43:711–717. doi:10.1016/j.indcrop.2012.08.027

    CAS  Google Scholar 

  • Yoo CG, Wang C, Yu C, Kim TH (2013) Enhancement of enzymatic hydrolysis and Klason lignin removal of corn stover using photocatalyst-assisted ammonia pretreatment. Appl Biochem Biotechnol 169:1648–1658. doi:10.1007/s12010-012-0002-4

    PubMed  CAS  Google Scholar 

  • Zhang C, Pang F, Li B, Xue S, Kang Y (2013) Recycled aqueous ammonia expansion (RAAE) pretreatment to improve enzymatic digestibility of corn stalks. Bioresour Technol 138:314–320. doi:10.1016/j.biortech.2013.03.091

    PubMed  CAS  Google Scholar 

  • Zhang J, Wang M, Gao M, Fang X, Yano S, Qin S, Xia R (2012a) Efficient acetone–butanol–ethanol production from corncob with a new pretreatment technology—wet disk milling. Bio Energy Res 6:35–43. doi:10.1007/s12155-012-9226-y

    Google Scholar 

  • Zhang WL, Liu ZY, Liu Z, Li FL (2012b) Butanol production from corncob residue using Clostridium beijerinckii NCIMB 8052. Lett Appl Microbiol 55:240–246. doi:10.1111/j.1472-765X.2012.03283.x

    PubMed  CAS  Google Scholar 

  • Zhang Y, Ezeji TC (2013) Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 to elucidate role of furfural stress during acetone butanol ethanol fermentation. Biotechnol Biofuels 6:66. doi:10.1186/1754-6834-6-66

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Y, Han B, Ezeji TC (2012c) Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation. N Biotechnol 29:345–351. doi:10.1016/j.nbt.2011.09.001

    PubMed  Google Scholar 

  • Zhang Y, Hou T, Li B, Liu C, Mu X, Wang H (2014) Acetone-butanol-ethanol production from corn stover pretreated by alkaline twin-screw extrusion pretreatment. Bioprocess Biosyst Eng 37:913–921. doi:10.1007/s00449-013-1063-7

    PubMed  CAS  Google Scholar 

  • Zhang Y, Ma Y, Yang F, Zhang C (2009) Continuous acetone-butanol-ethanol production by corn stalk immobilized cells. J Ind Microbiol Biotechnol 36:1117–1121. doi:10.1007/s10295-009-0582-3

    PubMed  CAS  Google Scholar 

  • Zhao J, Chen H (2014) Stimulation of cellulases by small phenolic compounds in pretreated stover. J Agric Food Chem 62:3223–3229

    CAS  Google Scholar 

  • Zhao X, Wang L, Lu X, Zhang S (2014) Pretreatment of corn stover with diluted acetic acid for enhancement of acidogenic fermentation. Bioresour Technol 158:12–18. doi:10.1016/j.biortech.2014.01.122

    PubMed  CAS  Google Scholar 

  • Zheng Y, Pan Z, Zhang R (2009a) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2:51–68

    CAS  Google Scholar 

  • Zheng Y-N, Li L-Z, Xian M, Ma YJ, Yang JM, Xu X, He DZ (2009b) Problems with the microbial production of butanol. J Ind Microbiol Biotechnol 36:1127–1138. doi:10.1007/s10295-009-0609-9

    PubMed  CAS  Google Scholar 

  • Zhu J, Yang J, Zhu Y, Zhang L, Yong Q, Xu Y, Li X, Yu S (2014) Cause analysis of the effects of acid-catalyzed steam-exploded corn stover prehydrolyzate on ethanol fermentation by Pichia stipitis CBS 5776. Bioprocess Biosyst Eng. doi:10.1007/s00449-014-1199-0

    Google Scholar 

  • Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101:4992–5002. doi:10.1016/j.biortech.2009.11.007

    PubMed  CAS  Google Scholar 

  • Zhu Z, Sathitsuksanoh N, Vinzant T, Schell DJ, McMillan JD, Zhang YHP (2009) Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnol Bioeng 103:715–724. doi:10.1002/bit.22307

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Department of Food, Agricultural and Biological Engineering and the Ohio Agricultural Research and Development Center (OARDC) of the College of Food, Agricultural, and Environmental Sciences of The Ohio State University. The authors wish to thank Mrs. Mary Wicks (Department of Food, Agricultural and Biological Engineering, OSU) for critical review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baral, N.R., Shah, A. Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 98, 9151–9172 (2014). https://doi.org/10.1007/s00253-014-6106-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6106-8

Keywords

Navigation