Skip to main content
Log in

Ammonium reduces chromium toxicity in the freshwater alga Chlorella vulgaris

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate the protective effect of ammonium (NH4 +) on Cr toxicity to the freshwater alga Chlorella vulgaris. We followed an array of cellular functions and biomolecules in C. vulgaris cells exposed to 50 or 100 μM Cr at three different initial NH4 + concentrations (0.5, 3, and 10 mM). The results showed that Cr strongly inhibited cell yield of C. vulgaris, but 10 mM NH4 + could decrease by more than two-fold Cr toxicity on cell yield compared to exposure to 0.5 mM NH4 +. Cr toxicity on gene transcripts and cellular substructure was also much lower at high than at low NH4 +. Our results suggest that this protecting effect of NH4 + on intracellular Cr toxicity could be due to several factors, such as enhance uptake of phosphorus, increase in C and N assimilation efficiency, and increase transcription of photosynthesis-related genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abril G, Frankignoulle M (2001) Nitrogen-alkalinity interactions in the highly polluted Scheldt basin (Belgium). Water Res 35:844–850

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Farooq MA, Jahangir MM, Abbas F, Bharwana SA, Zhang GP (2013) Effect of chromium and nitrogen form on photosynthesis and anti-oxidative system in barley. Biol Plant 57:758–763

    Article  CAS  Google Scholar 

  • Barata C, Lekumberri I, Vila-Escalé M, Prat N, Porte C (2005) Trace metal concentration, antioxidant enzyme activities and susceptibility to oxidative stress in the tricoptera larvae Hydropsyche exocellata from the Llobregat river basin (NE Spain). Aquat Toxicol 74:3–19

    Article  CAS  PubMed  Google Scholar 

  • Baxter IR, Vitek O, Lahner B, Muthukumar B, Borghi M, Morrissey J, Guerinot ML, Salt DE (2008) The leaf ionome as a multivariable system to detect a plant’s physiological status. Proc Natl Acad Sci U S A 105:12081–12086

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buerge IJ, Hug SJ (1997) Kinetics and pH dependence of chromium(VI) reduction by iron(II). Environ Sci Technol 31:1426–1432

    Article  CAS  Google Scholar 

  • Camargo JA, Álonso A (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849

    Article  CAS  PubMed  Google Scholar 

  • Cervantes C, Campos GJ, Devars S, Gutierrez CF, Loza TH, Torres GJC, Moreno SR (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  PubMed  Google Scholar 

  • Didur O, Dewez D, Popovic R (2013) Alteration of chromium effect on photosystem II activity in Chlamydomonas reinhardtii cultures under different synchronized state of the cell cycle. Environ Sci Pollut R 20:1870–1875

    Article  CAS  Google Scholar 

  • Dzombak DA, Morel FMM (1990) Surface complexation modeling: hydrous ferric oxide. Wiley, USA

    Google Scholar 

  • Fernandez E, Galvan A (2008) Nitrate assimilation in Chlamydomonas. Eukaryot Cell 4:555–559

    Article  Google Scholar 

  • Fisher P, Klein U (1988) Localization of nitrogen-assimilating enzymes in the chloroplast of Chlamydomonas reinhardtii. Plant Physiol 88:947–952

    Article  Google Scholar 

  • Fukuzawa H, Miura K, Ishizaki K, Kucho KI, Saito T, Kohinata T, Ohyama K (2001) Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2 availability. Proc Natl Acad Sci U S A 98:5347–5352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giansoldati V, Tassi E, Morelli E, Gabellieri E, Pedron F, Barbafieri M (2012) Nitrogen fertilizer improves boron phytoextraction by Brassica juncea grown in contaminated sediments and alleviates plant stress. Chemosphere 87:1119–1125

    Article  CAS  PubMed  Google Scholar 

  • Inskeep WP, Bloom PR (1985) Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80 % acetone. Plant Physiol 77:483–485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Izumo A, Fujiwara S, Oyama Y, Satoh A, Fujita N, Nakamura Y, Tsuzuki M (2007) Physicochemical properties of starch in Chlorella change depending on the CO2 concentration during growth: comparison of structure and properties of pyrenoid and stroma starch. Plant Sci 172:1138–1147

    Article  CAS  Google Scholar 

  • Kotas J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    Article  CAS  PubMed  Google Scholar 

  • Kuchitsu K, Tsuzuki M, Miyachi S (1988) Characterization of the pyrenoid isolated from unicellular green alga Chlamydomonas reinhardtii: Particulate form of RuBisCO protein. Protoplasma 144:17–24

    Article  CAS  Google Scholar 

  • Martell AE, Smith RM, Motekaitis RJ (2004) NIST critical stability constants of metal complexes, version 8. Natl Inst Stan, Gaithersburg

    Google Scholar 

  • Osafune T, Yokota A, Sumida S, Hase E (1990) Immunogold localization of ribulose-1,5-bisphosphate carboxylase with reference to pyrenoid morphology in chloroplasts of synchronized Euglena gracilis cells. Plant Physiol 92:802–808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qian HF, Sheng DG, Liu WP, Lu YC, Liu ZH, Fu ZW (2008a) Inhibitory effects of atrazine on Chlorella vulgaris as assessed by real-time polymerase chain reaction. Environ Toxicol Chem 27:182–187

    Article  CAS  PubMed  Google Scholar 

  • Qian HF, Chen W, Sheng GD, Xu XY, Liu WP, Fu ZW (2008b) Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris. Aquat Toxicol 88:301–307

    Article  CAS  PubMed  Google Scholar 

  • Qian HF, Lu T, Peng XF, Han X, Fu ZW, Liu WP (2011) Enantioselective phytotoxicity of the herbicide imazethapyr on the response of the antioxidant system and starch metabolism in Arabidopsis thaliana. PLoS One 6:e19451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qian HF, Sun ZQ, Sun LW, Jiang YF, Wei Y, Xie J, Fu ZW (2013) Phosphorus availability changes chromium toxicity in the freshwater alga Chlorella vulgaris. Chemosphere 93:885–891

    Article  CAS  PubMed  Google Scholar 

  • Qiu BY, Zeng FR, Cai SG, Wu XJ, Haider SI, Wu FB, Zhang GP (2013) Alleviation of chromium toxicity in rice seedlings by applying exogenous glutathione. J Plant Physiol 170:772–779

    Article  CAS  PubMed  Google Scholar 

  • Rodgher S, Espíndola ELG, Simões FCF, Tonietto AE (2012) Cadmium and chromium toxicity to Pseudokirchneriella subcapitata and Microcystis aeruginosa. Braz Arch Biol Techn 55:161–169

    Article  CAS  Google Scholar 

  • Saha R, Nandi R, Saha B (2011) Sources and toxicity of hexavalent chromium. J Coord Chem 64:1782–1806

    Article  CAS  Google Scholar 

  • Sánchez-Pardo B, Carpena RO, Zornoza P (2013) Cadmium in white lupin nodules: impact on nitrogen and carbon metabolism. J Plant Physiol 170:265–271

    Article  PubMed  Google Scholar 

  • Schecher WD, McAvoy D (1998) MINEQL+: a chemical equilibrium modeling system. 4.5 ed. Environ Res Soft, Hallowell, ME, USA

  • Shanker AK, Cervantes C, Loza TH, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  PubMed  Google Scholar 

  • Shao Y, Jiang L, Zhang DJ, Wang YL, Hou XL, Li CX (2010) Effects of alleviating the toxicity of arsenic to wheat by adding nitrogen and phosphorus fertilizers in polluted soil. In Environmental Science and Information Application Technology (ESIAT), 2010 International Conference on (Vol. 3, pp. 620-623). IEEE

  • Villarejo A, Martinez F, Plumed MD, Ramazanov Z (1996) The induction of the CO2 concentrating mechanism in a starch-less mutant of Chlamydomonas reinhardtii. Physiol Plantarum 98:798–802

    Article  CAS  Google Scholar 

  • Volland S, Lütz C, Michalke B, Lütz MU (2012) Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias. Aquat Toxicol 109:59–69

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wallace A, Soufi SM, Cha JW, Romney EM (1976) Some effects of chromium toxicity on bush bean plants grown in soil. Plant Soil 44:471–473

    Article  CAS  Google Scholar 

  • Zhang F, Wan X, Zhong Y (2014) Nitrogen as an important detoxification factor to cadmium stress in poplar plants. J Plant Interact 9:249–258

    Article  Google Scholar 

Download references

Acknowledgments

This work is a contribution of the Program for Changjiang Scholars and Innovative Research Team in University (IRT13096), Natural Science Foundation of China (21277125), and the Fonds de recherche du Québec – Nature et technologies.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Qian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 3317 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Sun, Z., Lavoie, M. et al. Ammonium reduces chromium toxicity in the freshwater alga Chlorella vulgaris . Appl Microbiol Biotechnol 99, 3249–3258 (2015). https://doi.org/10.1007/s00253-014-6218-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6218-1

Keywords

Navigation