Skip to main content
Log in

Pyroligneous acid—the smoky acidic liquid from plant biomass

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pyroligneous acid (PA) is a complex highly oxygenated aqueous liquid fraction obtained by the condensation of pyrolysis vapors, which result from the thermochemical breakdown or pyrolysis of plant biomass components such as cellulose, hemicellulose, and lignin. PA produced by the slow pyrolysis of plant biomass is a yellowish brown or dark brown liquid with acidic pH and usually comprises a complex mixture of guaiacols, catechols, syringols, phenols, vanillins, furans, pyrans, carboxaldehydes, hydroxyketones, sugars, alkyl aryl ethers, nitrogenated derivatives, alcohols, acetic acid, and other carboxylic acids. The phenolic components, namely guaiacol, alkyl guaiacols, syringol, and alkyl syringols, contribute to the smoky odor of PA. PA finds application in diverse areas, as antioxidant, antimicrobial, antiinflammatory, plant growth stimulator, coagulant for natural rubber, and termiticidal and pesticidal agent; is a source for valuable chemicals; and imparts a smoky flavor for food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alves FF, Bose SK, Francis RC, Colodette JL, Iakovlev M, Heiningen AV (2010) Carbohydrate composition of eucalyptus, bagasse and bamboo by a combination of methods. Carbohyd Polym 82:1097–1101

    Article  CAS  Google Scholar 

  • Amen Chen C, Pakdel H, Roy C (1997) Separation of phenols from Eucalyptus wood tar. Biomass Bioenergy 13:2537

    Article  Google Scholar 

  • Antal MJ (2003) The art, science and technology of charcoal production. Ind Eng Chem Res 42:1619–1640

    Article  CAS  Google Scholar 

  • Asmadi M, Kawamoto H, Saka S (2011a) Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei. J Anal Appl Pyrolysis 92:88–98

    Article  CAS  Google Scholar 

  • Asmadi M, Kawamoto H, Saka S (2011b) Thermal reactivities of catechols/pyrogallols and cresols/xylenols as lignin pyrolysis intermediates. J Anal Appl Pyrolysis 92:76–87

    Article  CAS  Google Scholar 

  • Baimark Y, Niamsa N (2009) Study on wood vinegars for use as coagulating and antifungal agents on the production of natural rubber sheets. Biomass Bioenergy 33:994–998

    Article  CAS  Google Scholar 

  • Balat M (2008) Mechanisms of thermochemical biomass conversion processes. Part 1: reactions of pyrolysis. Energy Sources Part A: Recovery, utilization and environmental effects, 30:620–635

  • Balat M, Balat M, Kırtay E, Balat H (2009) Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: pyrolysis systems. Energy Convers Manag 50:3147–3157

    Article  CAS  Google Scholar 

  • Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91:87–102

    Article  CAS  Google Scholar 

  • Bridgwater AV (2004) Biomass fast pyrolysis. Thermal Sci 8:21–49

    Article  Google Scholar 

  • Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94

    Article  CAS  Google Scholar 

  • Cai K, He Y (2011) Antioxidant activities of the pyroligneous acid in living Caenorhabditis elegans. Adv Mat Res 236–238:2564–2569

    Article  Google Scholar 

  • Cai K, Jiang S, Ren C, He Y (2012) Significant damage rescuing effects of wood vinegar extract in living Caenorhabditis elegans under oxidative stress. J Sc Food Agric 92:29–36

    Article  CAS  Google Scholar 

  • Cara C, Ruiz E, Oliva JM, Sáez F, Castro E (2008) Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresour Technol 99:1869–1876

    Article  CAS  PubMed  Google Scholar 

  • Carpita NC, McCann M (2000) The cell wall. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp 52–108

    Google Scholar 

  • Chan EWC, Tan YP, Chin SJ, Gan LY (2012) Antioxidant and antityrosinase properties of wood vinegar from Matang mangroves, Malaysia. ISME Glomis E J 10:19–21

    Google Scholar 

  • Choi JY, Shinde PL, Kwon IK, Song YH, Chae BJ (2009) Effect of wood vinegar on the performance, nutrient digestibility and intestinal microflora in weanling pigs. Asian-Aust J Anim Sci 22:267–274

    Article  CAS  Google Scholar 

  • Choi YS, Ahn BJ, Kim GH (2012) Extraction of chromium, copper and arsenic from CCA-treated wood by using wood vinegar. Bioresour Technol 120:328–331

  • Daroit D, Moura ABD, Martins IPD (2013) Vegetable charcoal and pyroligneous acid: technological, economical and legal aspects of its production and commerce, 8: 310–320

  • Demirbas A (2002) Partly chemical analysis of liquid fraction of flash pyrolysis products from biomass in the presence of sodium carbonate. Energy Convers Manag 43:1801–1809

    Article  CAS  Google Scholar 

  • Dijkerman R, Bhansing DCP, Op Den Camp HJM, Van Der Drift C, Vogels GD (1997) Degradation of structural polysaccharides by the plant cell-wall degrading enzyme system from anaerobic fungi: an application study. Enzym Microb Technol 21:130–136

    Article  CAS  Google Scholar 

  • Estrellan CR, Iino F (2010) Toxic emissions from open burning. Chemosphere 80:193–207

    Article  CAS  PubMed  Google Scholar 

  • Evans RJ, Milne TA (1987) Molecular characterization of the pyrolysis of biomass. Energy Fuels 1:123–137

    Article  CAS  Google Scholar 

  • Fagernas L, Kuoppala E, Tiilikkala K, Oasmaa A (2012) Chemical composition of birch wood slow pyrolysis products. Energy Fuels 26:1275–1283

    Article  CAS  Google Scholar 

  • FAO (2012) Corporate Document Depository. Recovery of by-products from hard wood carbonisation, Chapter 12. (http://www.fao.org/docrep/x5328e/x5328e0d.html)

  • Ferek R, Reid JS, Hobbs PV, Blake DR, Liousse C (1998) Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil. J Geophys Res D 103:32107–32118

    Article  CAS  Google Scholar 

  • Ferreira VS, Rego INC, Pastore JF, Mandai MM, Mendes LS, Santos KAM, Rubim JC, Suarez PAZ (2005) The use of smoke acid as an alternative coagulating agent for natural rubber sheet production. Bioresour Technol 96:605–609

  • French EH (1915) Process of producing pyroligneous acid. US1150589 A

  • Gadde B, Bonnet S, Menke C, Garivait S (2009) Air pollutant emissions from rice straw open field burning in India. Thail Philipp Environ Pollut 157:1554–1558

    Article  CAS  Google Scholar 

  • Guillen MD, Manzanos MJ (2002) Study of the volatile composition of an aqueous oak smoke preparation. Food Chem 79:283–292

    Article  CAS  Google Scholar 

  • Guillen MD, Manzanos MJ (2005) Characteristics of smoke flavorings obtained from mixtures of oak (Quercus) wood and aromatic plants (Thymus vulgaris and Salvia lavandulifolia Vahl). Flavor Frag J 20:676–685

    Article  CAS  Google Scholar 

  • Hagner M, Penttinen O-P, Tiilikkala K, Setala H (2013) The effects of biochar, wood vinegar and plants on glyphosate leaching and degradation. Eur J Soil Biol 58:1–7

  • Hamzah F, Idris A, Rashid R, Ming S (2009) Lactic acid production from microwave-alkali pre-treated empty fruit bunches fibre using Rhizopus oryzae pellet. J Appl Sci 9:3086–3091

    Article  CAS  Google Scholar 

  • Harris D, DeBolt S (2010) Synthesis, regulation and utilization of lignocellulosic biomass. Plant Biot J 8:244–262

    Article  CAS  Google Scholar 

  • Hazeltine B (2003) Field guide to appropriate technology. In: Hazeltine B and Bull C. (eds), Energy, Chapter 2, Academic Press, San Diego, pp. 266

  • Ho CL, Lin CY, Ka SM, Chen A, Tasi YL, Liu ML, Chiu YC, Hua KF (2013) Bamboo vinegar decreases inflammatory mediator expression and NLRP3 inflammasome activation by inhibiting reactive oxygen species generation and protein kinase C-α/δ activation. Plos One 8(10):e75738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MM, Scott IM, McGarvey BD, Conn K, Ferrante L, Berruti F, Briens C (2013) Toxicity of lignin, cellulose and hemicellulose pyrolyzed bio-oil combinations: estimating pesticide resources. J Anal Appl Pyrolysis 99:211–216

    Article  CAS  Google Scholar 

  • Howard RL, Abotsi E, Van Rensburg EJ, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. African J Biotechnol 2:602–619

    Article  CAS  Google Scholar 

  • Hwang YH, Matsushita YI, Sugamoto K, Matsui T (2005) Antimicrobial effect of the wood vinegar from Crytomeria japonica sapwood on plant pathogenic microorganisms. J Microbiol Biotechnol 15:1106–1109

    CAS  Google Scholar 

  • Ibrahim D, Kassim J, Sheh-Hong L, Rusli W (2013) Efficacy of pyroligneous acid from Rhizophora apiculata on pathogenic Candida albicans. J Appl Pharm Sci 3:7–13

  • Imamura E, Watanabe Y (2005) Anti-allergy composition comprising of wood vinegar or bamboo vinegar distilled solution. US Patent 0136133A1

  • Iqbal HMN, Ahmed I, Zia MA, Irfan M (2011) Purification and characterization of the kinetic parameters of cellulose produced from wheat straw by Trichoderma viride under SSF and its detergent compatibility. Adv Biosci Biotechnol 2:149–156

    Article  CAS  Google Scholar 

  • Jain K, Darah I, Wendy R, Hajjar KN (2007) Antimicrobial effects of Rhizophora apiculata pyroligneous acid against pathogenic microorganisms. Proceedings of the international conference on chemical science, Yogyakarta-Indonesia

  • Jin SY, Chen HZ (2007) Near-infrared analysis of the chemical composition of rice straw. Indust Crops Prod 26:207–211

    Article  CAS  Google Scholar 

  • John F, Monsalve G, Medina PIV, Ruiz CAA (2006) Ethanol production of banana shell and cassava starch. Dyna, Universidad Nacional de Colombia, 73:21–27

  • Kammen DM, Lew DJ (2005) Review of technologies for the production and use of biochar. Energy and Resources group and Goldman school of public policy. UC Berkeley and NREL

  • Kawamoto H, Horigoshi S, Saka S (2006) Pyrolysis reactions of various lignin model dimers. J Wood Sci 53:168–174

    Article  Google Scholar 

  • Kim K, Kurata T, Fujimaki M (1974) Identification of flavor constituents in carbonyl, non-carbonyl, neutral and basic fractions of aqueous smoke condensates. Agric Biol Chem 38:53–63

    Article  CAS  Google Scholar 

  • Kim DH, Seo HE, Sang-Chul L, Kyeong-Yeol L (2008) Effects of wood vinegar mixed with insecticides on the mortality of Nilaparvata lugens and Laodelphax striatellus. J Anim Cells Syst 12:47–52

    Article  Google Scholar 

  • Kim KH, Jeong HS, Kim JY, Han GS, Choi IG, Choi JW (2012) Evaluation of the antifungal effects of bio-oil prepared with lignocellulosic biomass using fast pyrolysis technology. Chemosphere 89:688–693

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Suto S, Tatsuka M (2002) Evaluation of carcinogenic/cocarcinogenic activity of chikusakueki, a bamboo charcoal by-product used as folk remedy, in BALB/c 3T3 cells. Biol Pharm Bull 25:1026–1029

    Article  CAS  PubMed  Google Scholar 

  • Kook K, Kim KH (2003) The effects of supplemental levels of bamboo vinegar on growth performance, serum profile and meat quality in fattening Hanwoo cow. Kor J Anim Sci Technol 45:57–68

    Article  Google Scholar 

  • Kook K, Kim JE, Jung KH, Kim JP, Koh HB, Lee JI, Kim CR, Kim KH (2002) Effect of supplemental bamboo vinegar on production and meat quality of meat-type ducks. Kor J Poult Sci 29:293–300

    CAS  Google Scholar 

  • Lee CS, Yi EH, Kim HR, Huh SR, Sung SH, Chung MH, Ye SK (2011) Anti-dermatitis effects of oak wood vinegar on the DNCB-induced contact hypersensitivity via STAT3 suppression. J Ethnopharmacol 135:747–753

    Article  CAS  PubMed  Google Scholar 

  • Lemieux PM, Lutes CC, Santoianni DA (2004) Emissions of organic air toxics from open burning: a comprehensive review. Prog Energy Combust Sci 30:1–32

    Article  CAS  Google Scholar 

  • Li HL, Ryu KS (2001) Effect of feeding various vinegar on performance and egg quality of laying hens. Kor J Anim Sci Technol 43:655–662

    Google Scholar 

  • Lin HC, Shiah TC (2006) Evaluation of fungi resistance of moso bamboo materials using bamboo vinegar with smoking process. Q J Forest Res Taiwan 25:51–66

  • Loo AI (2008) Isolation and characterization of antioxidant compounds from pyroligneous acid of Rhizophora apiculata. Ph.D Thesis, Universiti Sains Malaysia

  • Loo AI, Jain K, Darah I (2007) Antioxidant and radical scavenging activities of the pyroligneous acid from a mangrove plant, Rhizophora apiculata. Food Chem 104:300–307

    Article  CAS  Google Scholar 

  • Luo ZY, Wang SY, Liao YF, Zhou JS, Gu YL, Cen KF (2004) Research on biomass fast pyrolysis for liquid fuel. Biomass Bioenergy 26:455–462

    Article  CAS  Google Scholar 

  • Ma X, Wei Q, Zhang S, Shi L, Zhao Z (2011) Isolation and bioactivities of organic acids and phenols from walnut shell pyroligneous acid. J Anal Appl Pyrolysis 91:338–343

    Article  CAS  Google Scholar 

  • Ma C, Song K, Yu J, Yang L, Zhao C, Wang W, Zu G, Zu Y (2013) Pyrolysis process and antioxidant activity of pyroligneous acid from Rosmarinus officinalis leaves. J Anal Appl Pyrolysis 104:38–47

    Article  CAS  Google Scholar 

  • Magid J, Luxhoi J, Lyshede OB (2004) Decomposition of plant residues at low temperatures separates turnover of nitrogen and energy rich tissue components in time. Plant Soil 258:351–365

    Article  CAS  Google Scholar 

  • Mansur D, Yoshikawa T, Norinaga K, Hayashi J, Tago T, Masuda T (2013) Production of ketones from pyroligneous acid of woody biomass pyrolysis over an iron-oxide catalyst. Fuel 103:130–134

    Article  CAS  Google Scholar 

  • Manu R, Sangsricha S (2009) Evaluation of antioxidation and radical scavenging activities in pyroligneous acid samples. PACCON; Pure and Applied Chemistry International Conference, pp. 51–53

  • Marumoto S, Yamamoto SP, Nishimura H, Onomoto K, Yatagai M, Yazaki K, Fujita T, Watanabe T (2012) Identification of a germicidal compound against picornavirus in bamboo pyroligneous acid. J Agric Food Chem 60:9106–9111

    Article  CAS  PubMed  Google Scholar 

  • Maschio G, Koufopanos C, Lucchesi A (1992) Pyrolysis, a promising route for biomass utilization. Bioresour Technol 42:219–231

  • Mathew S, Abraham E (2004) Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Crit Rev Biotechnol 24:59–83

    Article  CAS  PubMed  Google Scholar 

  • Mathew S, Zakaria ZA, Musa F, Ngadiran S, Suan CL (2014) Free radical scavenging property and chemical profile of pyroligneous acid from pineapple waste biomass. Presented at the 5th International Conference on Wellbeing for Biotechnology, 11–12th June, UTM Kuala Lumpur, Malaysia

  • Mathew S, Yahayu, MA, Mahmud, KN, Zakaria ZA (2014) Pyroligneous acid from plant biomass and its applications. In: Biotechnology development in agriculture, industry and health. Advanced conversion technologies for lignocellulosic biomass (vol. 3), UTM Press, Awaiting final publication

  • Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy fuels 20:848–889

    Article  CAS  Google Scholar 

  • Moraes MSA, Migliorini MV, Damasceno FC, Georges F, Almeida S, Zini CA, Jacques RA, Caramão EB (2012) Qualitative analysis of bio-oils of agricultural residues obtained through pyrolysis using comprehensive two dimensional gas chromatography with time of flight mass spectrometric detector. J Anal Appl Pyrolysis 98:51–64

    Article  CAS  Google Scholar 

  • Mu J, Yu Z, Wu W, Wu Q (2006) Preliminary study of application effect of bamboo vinegar on vegetable growth. For Stud China 8:43–47

    Article  Google Scholar 

  • Mungkunkamchao T, Kesmala T, Pimratch S, Toomsan B, Jothityangkoon D (2013) Wood vinegar and fermented bioextracts: natural products to enhance growth and yield of tomato (Solanum lycopersicum L.). Sci Hortic 154:66–72

    Article  Google Scholar 

  • Okutucu C, Duman G, Ucar S, Yasa I, Yanik J (2011) Production of fungicidal oil and activated carbon from pistachio shell. J Anal Appl Pyrolysis 91:140–146

    Article  CAS  Google Scholar 

  • Oramahi HA, Yoshimura T (2013) Antifungal and antitermitic activities of wood vinegar from Vitex pubescens Vahl. J Wood Sci 59:344–350

    Article  CAS  Google Scholar 

  • Paraud C, Pors I, Journal JP, Besnier P, Reisdorffer L, Chartier C (2011) Control of cryptosporidiosis in neonatal goat kids: Efficacy of a product containing activated charcoal and wood vinegar liquid (Obionekk®) in field conditions. Vet Parasitol 180:354–357

  • Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568

    Article  CAS  PubMed  Google Scholar 

  • Petter FA, Silva LB, Souza IJ, Maggioni K, Pacheco LP, Almeida FA, Pavan BE (2013) Adaptation of the use of pyroligneous acid in control of caterpillars and agronomic performance of the soybean crop. J Agric Sci 5:27–36

    Google Scholar 

  • Rakmai J (2009) Chemical determination, antimicrobial and antioxidant activities of Thai wood vinegars. M.Sc. Thesis, Prince of Songkla University

  • Ratanapisit J, Apiraksakul S, Rerngnarong A, Chungsiriporn J, Bunyakarn C (2009) Preliminary evaluation of production and characterization of wood vinegar from rubber wood. Songklakanakarin J Sci Technol 31:343–349

    Google Scholar 

  • Rungruang P, Junyapoon S (2010) Antioxidative activity of phenolic compounds in pyroligneous acid produced from Eucalyptus wood. The 8th International Symposium on Biocontrol and Biotechnology, 102–106

  • Sanjuan R, Anzaldo J, Vargas J, Turrado J, Patt R (2001) Morphological and chemical composition of pith and fibers from Mexican sugarcane bagasse. Holz als Roh-und Werkstoff 59:447–450

    Article  CAS  Google Scholar 

  • Scott DS (1989) Process for the production of fermentable sugars from biomass. US Patent 4880473

  • Souza JBG, Re-Poppi N, Raposo JL Jr (2012) Characterization of pyroligneous acid used in agriculture by gas chromatography-mass spectrometry. J Braz Chem Soc 23:610–617

    CAS  Google Scholar 

  • Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappa AA (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis 105:143–150

    Article  CAS  Google Scholar 

  • Steiner C, Das KC, Garciac M, Försterd B, Zecha W (2008) Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia 51:359–366

    Article  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  PubMed  Google Scholar 

  • Velmurugan N, Han SS, Lee YS (2009) Antifungal activity of neutralized wood vinegar with water extracts of Pinus densiflora and Quercus serrata sawdusts. Int J Environ Res 3:167–176

    CAS  Google Scholar 

  • Vitasari CR, Meindersma GW, de Haan AB (2011) Water extraction of pyrolysis oil: the first step for the recovery of renewable chemicals. Bioresource Technol 102:7204–7210

    Article  CAS  Google Scholar 

  • Wang Z, Lin W, Song W, Yao J (2010) Preliminary investigation on concentrating of acetol from wood vinegar. Energy Convers Manag 51:346–349

    Article  CAS  Google Scholar 

  • Wang HF, Wang JL, Wang C, Zhang WM, Liu JX, Dai B (2012) Effect of bamboo vinegar as an antibiotic alternative on growth performance and fecal bacterial communities of weaned piglets. Livest Sci 144:173–180

    Article  Google Scholar 

  • Watarai S, Tana (2005) Eliminating the carriage of Salmonella enterica serovar Enteritidis in domestic fowls by feeding activated charcoal from the bark containing wood vinegar liquid (Nekka-Rich). Poult Sci 84:515–521

    Article  CAS  PubMed  Google Scholar 

  • Wei Q, Ma X, Dong J (2010a) Preparation, chemical constituents and antimicrobial activity of pyroligneous acids from walnut tree branches. J Anal Appl Pyrolysis 87:24–28

    Article  CAS  Google Scholar 

  • Wei Q, Ma X, Zhao Z, Zhang S, Liu S (2010b) Antioxidant activities and chemical profiles of pyroligneous acid from walnut shell. J Anal Appl Pyrolysis 88:149–154

    Article  CAS  Google Scholar 

  • Wendin K, Ellekjaer MR, Solheim R (1999) Fat content and homogenization effects on flavor and texture of mayonnaise with added aroma. Lebensm Wiss U Technol 32:377–383

    Article  CAS  Google Scholar 

  • Wititsiri S (2011) Production of wood vinegars from coconut shells and additional materials for control of termite workers, Odontotermes sp. and striped mealy bugs, Ferrisia virgata. Songklanakarin J Sci Technol 33:349–354

    CAS  Google Scholar 

  • Xiwei X, Enchen J (2014) Hydrogen from wood vinegar via catalytic reforming over Ni/Ce/γ-Al2O3 catalyst. J Anal Appl Pyrolysis 107:1–8

    Article  Google Scholar 

  • Xiwei X, Enchen J, Li B, Wang M, Wang G, Ma Q, Shi D, Guo X (2013) Hydrogen production from wood vinegar of Camellia oleifera shell by Ni/M/γ-Al2O3 catalyst. Catalysis Comm 39:106–114

    Article  Google Scholar 

  • Xu F, Shi YC, Wang D (2013) X-ray scattering studies of lignocellulosic biomass: a review. Carbohydr Polym 94:904–917

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Yan R, Chen H, Lee D, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  • Yatagai M, Nishimoto M, Hori K, Ohira T, Shibata A (2002) Termiticidal activity of wood vinegar, its components and their homologues. J Wood Sci 48:338–342

    Article  CAS  Google Scholar 

  • Zhang W, Hua Y, Wang W, Fu Q (2003) Study on technology of high purity bamboo vinegar production. Peop Rep China 23:46–50 (in Chinese with English summary)

    Google Scholar 

  • Zhu Y, Lee YY, Elander RT (2005) Optimization of dilute acid pretreatment of corn stover using a high-solids percolation reactor. Appl Biochem Biotechnol 121–124:1045–1054

    Article  PubMed  Google Scholar 

  • Zulkarami B, Ashrafuzzaman M, Husni MO, Ismail MR (2011) Effect of pyroligneous acid on growth, yield and quality improvement of rockmelon in soilless culture. Australian J Crop Sci 5:1508–1514

    CAS  Google Scholar 

Download references

Acknowledgments

The first author acknowledges the Universiti Teknologi Malaysia (UTM) for the post-doctoral fellowship. The authors are thankful to UTM for the Research University Grant Scheme (Q.J130000.2509.03H84 and 06H37), and thanks are due also to the Ministry of Higher Education (MOHE) and the Malaysian Pineapple Industry Board for the collaboration and financial assistance (4B072 and 4B096).

Conflict of interest

The authors state that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sindhu Mathew.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathew, S., Zakaria, Z.A. Pyroligneous acid—the smoky acidic liquid from plant biomass. Appl Microbiol Biotechnol 99, 611–622 (2015). https://doi.org/10.1007/s00253-014-6242-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6242-1

Keywords

Navigation