Skip to main content
Log in

A natural short pathway synthesizes roquefortine C but not meleagrin in three different Penicillium roqueforti strains

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The production of mycotoxins and other secondary metabolites in Penicillium roqueforti is of great interest because of its long history of use in blue-veined cheese manufacture. In this article, we report the cloning and characterization of the roquefortine gene cluster in three different P. roqueforti strains isolated from blue cheese in the USA (the type strain), France, and the UK (Cheshire cheese). All three strains showed an identical roquefortine gene cluster organization and almost identical (98–99 %) gene nucleotide sequences in the entire 16.6-kb cluster region. When compared with the Penicillium chrysogenum roquefortine/meleagrin seven-gene cluster, the P. roqueforti roquefortine cluster contains only four genes (rds, rdh, rpt, and gmt) encoding the roquefortine dipeptide synthetase, roquefortine D dehydrogenase, roquefortine prenyltransferase, and a methyltransferase, respectively. Silencing of the rds or rpt genes by the RNAi strategy reduced roquefortine C production by 50 % confirming the involvement of these two key genes in roquefortine biosynthesis. An additional putative gene, orthologous of the MFS transporter roqT, is rearranged in all three strains as a pseudogene. The same four genes and a complete (not rearranged) roqT, encoding a MFS transporter containing 12 TMS domains, occur in the seven-gene cluster in P. chrysogenum although organized differently. Interestingly, the two “late” genes of the P. chrysogenum roquefortine/meleagrin gene cluster that convert roquefortine C to glandicoline B and meleagrin are absent in the P. roqueforti four-gene cluster. No meleagrin production was detected in P. roqueforti cultures grown in YES medium, while P. chrysogenum produces meleagrin in these conditions. No orthologous genes of the two missing meleagrin synthesizing genes were found elsewhere in the recently released P. roqueforti genome. Our data suggest that during evolution, the seven-gene cluster present in P. chrysogenum, and probably also in other glandicoline/meleagrin producing fungi, has been trimmed down to a short cluster in P. roqueforti leading to the synthesis of roquefortine C rather than meleagrin as a final product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali H, Ries MI, Nijland JG, Lankhorst PP, Hankemeier T, Bovenberg RA, Vreeken RJ, Driessen AJ (2013) A branched biosynthetic pathway is involved in production of roquefortine and related compounds in Penicillium chrysogenum. PLoS One 8(6):e65328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aninat C, Hayashi Y, Andre F, Delaforge M (2001) Molecular requirements for inhibition of cytochrome p450 activities by roquefortine. Chem Res Toxicol 14:1259–1265

    Article  CAS  PubMed  Google Scholar 

  • Casqueiro J, Bañuelos O, Gutiérrez S, Hijarrubia MJ, Martín JF (1999) Intrachromosomal recombination between direct repeats in Penicillium chrysogenum: gene conversión and deletion events. Mol Gen Genet 261:994–1000

    Article  CAS  PubMed  Google Scholar 

  • Cepeda-García C, Domínguez-Santos R, García-Rico RO, García-Estrada C, Cajiao A, Fierro F, Martín JF (2014) Direct involvement of the CreA transcription factor in penicillin biosynthesis and expression of the pcbAB gene in Penicillium chrysogenum. Appl Microbiol Biotechnol 98:7113–7124

    Article  PubMed  Google Scholar 

  • Chang SC, Lu CY, Li SY, Wei YH (1991a) Potentiation effect of corn extract on the production of eremofortin C, EC oxidase, and PR toxin by Penicillium roqueforti. Proc Natl Sci Counc Repub China B 15:153–159

    CAS  PubMed  Google Scholar 

  • Chang SC, Wei YH, Wei DL, Chen YY, Jong SC (1991b) Factors affecting the production of eremofortin C and PR toxin in Penicillium roqueforti. Appl Environ Microbiol 57:2581–2585

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheeseman K, Ropars J, Renault P, Dupont J, Gouzy J, Branca A, Abraham AL, Ceppi M, Conseiller E, Debuchy R, Malagnac F, Goarin A, Silar P, Lacoste S, Sallet E, Bensimon A, Giraud T, Brygoo Y (2014) Multiple recent horizontal transfers of a large genomic region in cheese making fungi. Nat Commun 5:2876

    Article  PubMed Central  PubMed  Google Scholar 

  • Díez B, Barredo JL, Alvarez E, Cantoral JM, van Solingen P, Groenen MAM, Veenstra AE, Martín JF (1989) Two genes involved in penicillin biosynthesis are linked in a 5.1 kb SalI fragment in the genome of Penicillium chrysogenum. Mol Gen Genet 218:572–576

    Article  PubMed  Google Scholar 

  • Domínguez-Santos R, Martín JF, Kosalková K, Prieto C, Ullán RV, García-Estrada C (2012) The regulatory factor PcRFX1 controls the expression of the three genes of β-lactam biosynthesis in Penicillium chrysogenum. Fungal Genet Biol 49:866–881

    Article  PubMed  Google Scholar 

  • Fernández-Aguado M, Ullán RV, Teijeira F, Rodríguez-Castro R, Martín JF (2013) The transport of phenylacetic acid across the peroxisomal membrane is mediated by the PaaT protein in Penicillium chrysogenum. Appl Microbiol Biotechnol 97:3073–3084

    Article  PubMed  Google Scholar 

  • Fernández-Bodega MA, Mauriz E, Gómez A, Martín JF (2009) Proteolytic activity, mycotoxins and andrastin A in Penicillium roqueforti strains isolated from Cabrales, Valdeón and Bejes-Tresviso local varieties of blue-veined cheeses. Intern J Food Microbiol 136:18–25

    Article  Google Scholar 

  • Fierro F, García-Estrada C, Castillo NI, Rodríguez R, Velasco-Conde T, Martín JF (2006) Transcriptional and bioinformatic analysis of the 56.8 kb DNA region amplified in tandem repeats containing the penicillin gene cluster in Penicillium chrysogenum. Fungal Genet Biol 43:618–629

    Article  CAS  PubMed  Google Scholar 

  • Fontaine K, Passeró E, Vallone L, Hymery N, Coton M, Jany JL, Mounier J, Coton E (2015) Occurrence of roquefortine C, mycohenolic acid and aflatoxin M1 mycotoxins in blue-veined cheeses. Food Control 47:634–640

    Article  CAS  Google Scholar 

  • Frisvad F, Smedsgaard J, Larsen T, Samson R (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–242

    Google Scholar 

  • García-Estrada C, Ullán RV, Albillos SM, Fernández-Bodega MÁ, Durek P, von Döhren H, Martín JF (2011) A single cluster of coregulated genes encodes the biosynthesis of the mycotoxins roquefortine C and meleagrin in Penicillium chrysogenum. Chem Biol 18:1499–1512

    Article  PubMed  Google Scholar 

  • García-Rico RO, Fierro F, Mauriz E, Gómez A, Fernández-Bodega MA, Martín JF (2008) The heterotrimeric Gα protein Pga1 regulates biosynthesis of penicillin, chrysogenin and roquefortine in Penicillium chrysogenum. Microbiology 154:3567–3578

    Article  PubMed  Google Scholar 

  • Hidalgo PI, Ullán RV, Albillos SM, Montero O, Fernández-Bodega MÁ, García-Estrada C, Fernández-Aguado M, Martín JF (2014) Molecular characterization of the PR-toxin gene cluster in Penicillium roqueforti and Penicillium chrysogenum: cross talk of secondary metabolite pathways. Fungal Genet Biol 62:11–24

    Article  CAS  PubMed  Google Scholar 

  • Houbraken J, Frisvad JC, Samson RA (2011) Fleming’s penicillin production strain is not Penicillium chrysogenum but P. rubens. Fungus 2:87–95

  • Kato N, Suzuki H, Takagi H, Asami Y, Kakeya H, Uramoto M, Usui T, Takahashi S, Sugimoto Y, Osada H (2009) Identification of cytochrome P450s required for fumitremorgin biosynthesis in Aspergillus fumigatus. Chembiochem 10(5):920–928

    Article  CAS  PubMed  Google Scholar 

  • Kopp B, Rehm HJ (1981) Studies on the inhibition of bacterial macromolecule synthesis by roquefortine, a mycotoxin from penicillium roqueforti. Eur J Appl Microbiol Biotechnol 13:232–235

    Article  CAS  Google Scholar 

  • Kopp-Holtwiesche B, Rehm HJ (1990) Antimicrobial action of roquefortine. J Environ Pathol Toxicol Oncol 10:41–44

    CAS  PubMed  Google Scholar 

  • Kozlovsky AG, Vinokurova NG, Reshetilova TA, Sakharovsky VG, Baskunov BP, Seleznev SG (1994) New metabolites of Penicillium glandicola var. glandicola: glandicoline A and glandicoline B. Microbiology 30:334–337

    Google Scholar 

  • Li SM (2009) Evolution of aromatic prenyltransferases in the biosynthesis of indole derivatives. Phytochemistry 70:1746–1757

    Article  CAS  PubMed  Google Scholar 

  • Martín JF (2000) Molecular control of expression of penicillin biosynthesis genes in fungi: regulatory proteins interact with a bidirectional promoter region. J Bacteriol 182:2355–2362

    Article  PubMed Central  PubMed  Google Scholar 

  • Martín JF (2015) Fungal transformation: from protoplasts to targeted recombination systems. In: van den Berg M, Maruthachalam K (eds) Genetic transformation systems in fungi, Vol. 1, Fungal Biology. Springer Int Publ Switzerland. In press.

  • Martín JF, Coton M (2015) Blue cheese: microbiota and fungal metabolites. In: Frias J, Martínez-Villaluenga C, Peñas, E (eds) Fermented Foods in Health and Disease Prevention. Elsevier, New York. In press.

  • Martín JF, Casqueiro J, Liras P (2005) Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Curr Opin Microbiol 8:282–293

    Article  PubMed  Google Scholar 

  • Martín JF, Liras P, García-Estrada C (2014) Roquefortine and Prenylated Indole Alkaloids. In: Martín JF, García-Estrada C, Zeilinger S (eds) Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites. Springer, New York, pp 111–128

    Google Scholar 

  • Nielsen KF, Sumarah MW, Frisvad JC, Niller JD (2006) Production of Metabolites from the Penicillium roqueforti complex. J Agric Food Chem 54:3756–3763

    Article  CAS  PubMed  Google Scholar 

  • Ohmomo S, Oguma K, Ohashi T, Abe M (1978) Isolation of a new indole alkaloid, roquefortine D, from the cultures of Penicillium roqueforti. Agric Biol Chem 42:2387–2389

    Article  CAS  Google Scholar 

  • Overy DP, Nielsen KF, Smedsgaard J (2005) Roquefortine/oxaline biosynthesis pathway metabolites in Penicillium ser. Corymbifera: in planta production and implications for competitive fitness. J Chem Ecol 31:2373–2390

    Article  CAS  PubMed  Google Scholar 

  • Polonsky J, Merrien MA, Scott PM (1977) Roquefortine and isofumigaclavine A, alkaloids from Penicillium roqueforti. Ann Nutr Aliment 31:963–968

  • Reshetilova TA, Vinokurova NG, Khmelenina VN, Kozlovsky AG (1995) The role of roquefortine in the synthesis of alkaloids meleagrin, glandicolines A and B and oxaline in fungi Penicillium glandicola and P. atramentosum. Mikrobiology 64:27–29

  • Ries MI, Ali H, Lankhorst PP, Hankemeier T, Bovenberg RA, Driessen AJ, Vreeken RJ (2013) Novel key metabolites reveal further branching of the roquefortine/meleagrin biosynthetic pathway. J Biol Chem 288:37289–37295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tudzynski P, Neubauer L (2014) Ergot Alkaloids. In: Martín JF, García-Estrada C, Zeilinger S (eds) Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites. Springer, New York, pp 303–316

    Google Scholar 

  • Ullán RV, Godio RP, Teijeira F, Vaca I, García-Estrada C, Feltrer R, Kosalkova K, Martín JF (2008) RNA-silencing in Penicillium chrysogenum and Acremonium chrysogenum: validation studies using beta-lactam genes expression. J Microbiol Methods 75:209–218

    Article  PubMed  Google Scholar 

  • Vaiman D (2002) Agar plug/serial dilution approach for rapid PCR screening of phage libraries. Biotechniques 33:764–766

    CAS  PubMed  Google Scholar 

  • Wagener RE, Davis ND (1980) Diener UL (1980) Penitrem A and Roquefortine Production by Penicillium commune. Appl Environ Microbiol 39:882–887

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ware GM, Thorpe CW, Pohland AE (1980) Determination of roquefortine in blue cheese and blue cheese dressing by high pressure liquid chromatography with ultraviolet and electrochemical detectors. J Assoc Off Anal Chem 63:637–641

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant of the European Union (EUROFUNGBASE LSSG-CT-2005-018964) to J.F.M. R. Domínguez-Santos received a fellowship (EDU1204/2010) from the Junta de Castilla y León. We thank D. Miller (Ottawa, Canada) for providing a sample of meleagrin.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

All the authors declare that they have no conflict of interest in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Martín.

Additional information

K. Kosalková and R. Domínguez-Santos contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 383 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosalková, K., Domínguez-Santos, R., Coton, M. et al. A natural short pathway synthesizes roquefortine C but not meleagrin in three different Penicillium roqueforti strains. Appl Microbiol Biotechnol 99, 7601–7612 (2015). https://doi.org/10.1007/s00253-015-6676-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6676-0

Keywords

Navigation