Skip to main content

Advertisement

Log in

Impact of the antifungal protein PgAFP from Penicillium chrysogenum on the protein profile in Aspergillus flavus

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Antifungal proteins produced by molds are generally small, highly basic, and cysteine-rich. The best known effects of these proteins include morphological changes, metabolic inactivation, and membrane perturbation on sensitive fungi. Reactive oxygen species (ROS) generation leads to apoptosis, with G protein playing a key role in transduction of cell death signals. The antifungal protein PgAFP from Penicillium chrysogenum inhibits growth of some toxigenic molds. Here we analyzed the effect of the antifungal protein PgAFP on the growth of Aspergillus flavus. For this, comparative proteomic analysis was used to identify the whole protein profile and protein change in abundance after PgAFP treatment. PgAFP provoked metabolic changes related to reduced energy metabolism, cell wall integrity alteration, and increased stress response due to higher levels of ROS. The observed changes in protein abundance, favoring a higher glutathione concentration as well as the increased abundance in heat shock proteins, do not seem to be enough to avoid necrosis. The decreased chitin deposition observed in PgAFP-treated A. flavus is attributed to a lower relative quantity of Rho1. The reduced relative abundance of a β subunit of G protein seems to be the underlying reason for modulation of apoptosis in PgAFP-treated A. flavus hyphae. We propose Rho1 and G protein subunit β CpcB to be the main factors in the mode of action of PgAFP in A. flavus. Additionally, enzymes essential for the biosynthesis of aflatoxin were no longer detectable in A. flavus hyphae at 24 h, following treatment with PgAFP. This presents a promising effect of PgAFP, which may prevent A. flavus from producing mycotoxins. However, the impact of PgAFP on actual aflatoxin production requires further study.

Abstract

Antifungal proteins produced by molds are generally small, highly basic, and cysteine-rich. The best known effects of these proteins include morphological changes, metabolic inactivation, and membrane perturbation on sensitive fungi. Reactive oxygen species (ROS) generation leads to apoptosis, with G -protein playing a key role in transduction of cell death signals. The antifungal protein PgAFP from Penicillium chrysogenum inhibits growth of some toxigenic molds. Here we analyzed the effect of the antifungal protein PgAFP on the growth of Aspergillus flavus. For this, comparative proteomic analysis was used to identify the whole protein profile and protein change in abundance after PgAFP treatment. PgAFP provoked metabolic changes related to reduced energy metabolism, cell wall integrity alteration, and increased stress response due to higher levels of ROS. The observed changes in protein abundance, favoring a higher glutathione concentration as well as the increased abundance in heat shock proteins, do not seem to be enough to avoid necrosis. The decreased chitin deposition observed in PgAFP-treated A. flavus is attributed to a lower relative quantity of Rho1. The reduced relative abundance of a β subunit of G -protein seems to be the underlying reason for modulation of apoptosis in PgAFP-treated A. flavus hyphae. We propose Rho1 and G -protein subunit β CpcB to be the main factors in the mode of action of PgAFP in A. flavus. Additionally, enzymes essential for the biosynthesis of aflatoxin were no longer detectable in A. flavus hyphae at 24 h, following treatment with PgAFP. This presents a promising effect of PgAFP, which may prevent A. flavus from producing mycotoxins. However, the impact of PgAFP on actual aflatoxin production requires further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Acosta R, Rodríguez-Martín A, Martín A, Núñez F, Asensio MA (2009) Selection of antifungal protein-producing molds from dry-cured meat products. Int J Food Microbiol 135:39–46. doi:10.1016/j.ijfoodmicro.2009.07.020

    Article  CAS  PubMed  Google Scholar 

  • Agaphonov MO, Packeiser AN, Chechenova MB, Choi ES, Ter-Avanesyan MD (2001) Mutation of the homologue of GDP-mannose pyrophosphorylase alters cell wall structure, protein glycosylation and secretion in Hansenula polymorpha. Yeast 18:391–402. doi:10.1002/yea.678

    Article  CAS  PubMed  Google Scholar 

  • Allameh A, Razzaghi Abyane M, Shams M, Rezaee MB, Jaimand K (2002) Effects of neem leaf extract on production of aflatoxins and activities of fatty acid synthetase, isocitrate dehydrogenase and glutathione S-transferase in Aspergillus parasiticus. Mycopathologia 154:79–84

    Article  CAS  PubMed  Google Scholar 

  • Batta G, Barna T, Gáspári Z, Sándor S, Kövér KE, Binder U, Sarg B, Kaiserer L, Chhillar AK, Eigentler A, Leiter E, Hegedüs N, Pócsi I, Lindner H, Marx F (2009) Functional aspects of the solution structure and dynamics of PAF-a highly-stable antifungal protein from Penicillium chrysogenum. FEBS J 276:2875–2890. doi:10.1111/j.1742-4658.2009.07011.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bernáldez V, Rodríguez A, Martín A, Lozano D, Córdoba JJ (2014) Development of a multiplex qPCR method for simultaneous quantification in dry-cured ham of an antifungal-peptide Penicillium chrysogenum strain used as protective culture and aflatoxin-producing moulds. Food Control 36:257–265. doi:10.1016/j.foodcont.2013.08.020

    Article  Google Scholar 

  • Binder U, Oberparleiter C, Meyer V, Marx F (2010) The antifungal protein PAF interferes with PKC/MPK and cAMP/PKA signalling of Aspergillus nidulans. Mol Microbiol 75:294–307. doi:10.1111/j.1365-2958.2009.06936.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bormann C, Baier D, Hörr I, Raps C, Ho I (1999) Characterization of a novel, antifungal, chitin-binding protein from Streptomyces tendae Tü901 that interferes with growth polarity. J Bacteriol 181:7421–7429

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  CAS  PubMed  Google Scholar 

  • Byczkowska A, Kunikowska A, Kaźmierczak A (2012) Determination of ACC-induced cell-programmed death in roots of Vicia faba ssp. minor seedlings by acridine orange and ethidium bromide staining. Protoplasma 250:121–128. doi:10.1007/s00709-012-0383-9

    Article  PubMed Central  PubMed  Google Scholar 

  • Cabiscol E, Piulats E, Echave P, Herrero E, Ros J (2000) Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem 275:27393–27398. doi:10.1074/jbc.M003140200

    CAS  PubMed  Google Scholar 

  • Cagas SE, Jain MR, Li H, Perlin DS (2011) Profiling the Aspergillus fumigatus proteome in response to caspofungin. Antimicrob Agents Chemother 55:146–154. doi:10.1128/AAC.00884-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carberry S, Neville CM, Kavanagh KA, Doyle S (2006) Analysis of major intracellular proteins of Aspergillus fumigatus by MALDI mass spectrometry: identification and characterisation of an elongation factor 1B protein with glutathione transferase activity. Biochem Biophys Res Commun 341:1096–1104. doi:10.1016/j.bbrc.2006.01.078

    Article  CAS  PubMed  Google Scholar 

  • Carpentier SC, Witters E, Laukens K, Deckers P, Swennen R, Panis B (2005) Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics 5:2497–2507. doi:10.1002/pmic.200401222

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Ao J, Yang W, Jiao L, Zheng T, Chen X (2013) Purification and characterization of a novel antifungal protein secreted by Penicillium chrysogenum from an Arctic sediment. Appl Microbiol Biotechnol 97:10381–10390. doi:10.1007/s00253-013-4800-6

    Article  CAS  PubMed  Google Scholar 

  • Coca MA, Damsz B, Yun DJ, Hasegawa PM, Bressan RA, Narasimhan ML (2000) Heterotrimeric G-proteins of a filamentous fungus regulate cell wall composition and susceptibility to a plant PR-5 protein. Plant J 22:61–69

    Article  CAS  PubMed  Google Scholar 

  • Collins C, Keane TM, Turner DJ, O’Keeffe G, Fitzpatrick DA, Doyle S (2013) Genomic and proteomic dissection of the ubiquitous plant pathogen, Armillaria mellea: toward a new infection model system. J Proteome Res 12:2552–2570. doi:10.1021/pr301131t

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372. doi:10.1038/nbt.1511

    Article  CAS  PubMed  Google Scholar 

  • Delgado J, Acosta R, Rodríguez-Martín A, Bermúdez E, Núñez F, Asensio MA (2015) Growth inhibition and stability of PgAFP from Penicillium chrysogenum against fungi common on dry-ripened meat products. Int J Food Microbiol 205:23–29. doi:10.1016/j.ijfoodmicro.2015.03.029

    Article  CAS  PubMed  Google Scholar 

  • Dolan SK, Owens RA, O’Keeffe G, Hammel S, Fitzpatrick DA, Jones GW, Doyle S (2014) Regulation of non-ribosomal peptide synthesis: bis-thiomethylation attenuates gliotoxin biosynthesis in Aspergillus fumigatus. Chem Biol 21:999–1012. doi:10.1016/j.chembiol.2014.07.006

    Article  CAS  PubMed  Google Scholar 

  • Fischer R, Zekert N, Takeshita N (2008) Polarized growth in fungi-interplay between the cytoskeleton, positional markers and membrane domains. Mol Microbiol 68:813–826. doi:10.1111/j.1365-2958.2008.06193.x

    Article  CAS  PubMed  Google Scholar 

  • Fuchs BB, Mylonakis E (2009) Our paths might cross: the role of the fungal cell wall integrity pathway in stress response and cross talk with other stress response pathways. Eukaryot Cell 8:1616–1625. doi:10.1128/EC.00193-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galgóczy L, Kovács L, Karácsony Z, Virágh M, Hamari Z, Vágvölgyi C (2013) Investigation of the antimicrobial effect of Neosartorya fischeri antifungal protein (NFAP) after heterologous expression in Aspergillus nidulans. Microbiology 159:411–419. doi:10.1099/mic.0.061119-0

    Article  PubMed  Google Scholar 

  • Gauci VJ, Wright EP, Coorssen JR (2011) Quantitative proteomics: assessing the spectrum of in-gel protein detection methods. J Chem Biol 4:3–29. doi:10.1007/s12154-010-0043-5

    Article  PubMed Central  PubMed  Google Scholar 

  • Gautam P, Shankar J, Madan T, Sirdeshmukh R, Sundaram CS, Gade WN, Basir SF, Sarma PU (2008) Proteomic and transcriptomic analysis of Aspergillus fumigatus on exposure to amphotericin B. Antimicrob Agents Chemother 52:4220–4227. doi:10.1128/AAC.01431-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Görg A, Drews O, Lück C, Weiland F, Weiss W (2009) 2-DE with IPGs. Electrophoresis 30(Suppl 1):S122–S132. doi:10.1002/elps.200900051

    Article  PubMed  Google Scholar 

  • Guest GM, Lin X, Momany M (2004) Aspergillus nidulans RhoA is involved in polar growth, branching, and cell wall synthesis. Fungal Genet Biol 41:13–22. doi:10.1016/j.fgb.2003.08.006

    Article  CAS  PubMed  Google Scholar 

  • Hagen S, Marx F, Ram AF, Meyer V (2007) The antifungal protein AFP from Aspergillus giganteus inhibits chitin synthesis in sensitive fungi. Appl Environ Microbiol 73:2128–2134. doi:10.1128/AEM.02497-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hamann A, Brust D, Osiewacz HD (2008) Apoptosis pathways in fungal growth, development and ageing. Trends Microbiol 16:276–283. doi:10.1016/j.tim.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  • Harris SD, Morrell JL, Hamer JE (1994) Identification and characterization of Aspergillus nidulans mutants defective in cytokinesis. Genetics 532:517–532

    Google Scholar 

  • Hegedus N, Leiter E, Kovács B, Tomori V, Kwon N-J, Emri T, Marx F, Batta G, Csernoch L, Haas H, Yu J-H, Pócsi I (2011) The small molecular mass antifungal protein of Penicillium chrysogenum—a mechanism of action oriented review. J Basic Microbiol 51:561–571. doi:10.1002/jobm.201100041

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Rodríguez Y, Hastings S, Momany M (2012) The septin AspB in Aspergillus nidulans forms bars and filaments and plays roles in growth emergence and conidiation. Eukaryot Cell 11:311–323. doi:10.1128/EC.05164-11

    Article  PubMed Central  PubMed  Google Scholar 

  • Jayashree T, Subramanyan C (2000) Oxidative stress as a prerequisite for aflatoxin production by Aspergillus parasiticus. Free Radic Biol Med 29:981–985

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Ouyang H, Zhou H, Jin C (2008) GDP-mannose pyrophosphorylase is essential for cell wall integrity, morphogenesis and viability of Aspergillus fumigatus. Microbiology 154:2730–2739. doi:10.1099/mic.0.2008/019240-0

    Article  CAS  PubMed  Google Scholar 

  • Kabani M, Martineau CN (2008) Multiple hsp70 isoforms in the eukaryotic cytosol: mere redundancy or functional specificity? Curr Genomics 9:338–348. doi:10.2174/138920208785133280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaiserer L, Oberparleiter C, Weiler-Görz R, Burgstaller W, Leiter E, Marx F (2003) Characterization of the Penicillium chrysogenum antifungal protein PAF. Arch Microbiol 180:204–210. doi:10.1007/s00203-003-0578-8

    Article  CAS  PubMed  Google Scholar 

  • Kaur H, Kumar C, Junot C, Toledano MB, Bachhawat AK (2009) Dug1p is a Cys-Gly peptidase of the γ-glutamyl cycle of Saccharomyces cerevisiae and represents a novel family of Cys-Gly peptidases. J Biol Chem 284:14493–14502. doi:10.1074/jbc.M808952200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim JH, Yu J, Mahoney N, Chan KL, Molyneux RJ, Varga J, Bhatnagar D, Cleveland TE, Nierman WC, Campbell BC (2008) Elucidation of the functional genomics of antioxidant-based inhibition of aflatoxin biosynthesis. Int J Food Microbiol 122:49–60. doi:10.1016/j.ijfoodmicro.2007.11.058

    Article  CAS  PubMed  Google Scholar 

  • Kovács L, Virágh M, Takó M, Papp T, Vágvölgyi C, Galgóczy L (2011) Isolation and characterization of Neosartorya fischeri antifungal protein (NFAP). Peptides 32:1724–1731. doi:10.1016/j.peptides.2011.06.022

    Article  PubMed  Google Scholar 

  • Lacadena J, Martínez del Pozo A, Lacadena V, Martínez-Ruiz A, Mancheño JM, Oñaderra M, Gavilanes JG (1998) The cytotoxin α-sarcin behaves as a cyclizing ribonuclease. FEBS Lett 424:46–48. doi:10.1016/S0014-5793(98)00137-9

    Article  CAS  PubMed  Google Scholar 

  • Lamarre C, Sokol S, Debeaupuis JP, Henry C, Lacroix C, Glaser P, Coppée JY, François JM, Latgé JP (2008) Transcriptomic analysis of the exit from dormancy of Aspergillus fumigatus conidia. BMC Genomics 9:417. doi:10.1186/1471-2164-9-417

    Article  PubMed Central  PubMed  Google Scholar 

  • Leiter É, Szappanos H, Oberparleiter C, Kaiserer L, Csernoch L, Pusztahelyi T, Emri T, Pócsi I, Salvenmoser W, Marx F (2005) Antifungal protein PAF severely affects the integrity of the plasma membrane of Aspergillus nidulans and induces an apoptosis-like phenotype. Antimicrob Agents Chemother 49:2445–2453. doi:10.1128/AAC.49.6.2445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lessing F, Kniemeyer O, Wozniok I, Loeffler J, Kurzai O, Haertl A, Brakhage AA (2007) The Aspergillus fumigatus transcriptional regulator AfYap1 represents the major regulator for defense against reactive oxygen intermediates but is dispensable for pathogenicity in an intranasal mouse infection model. Eukaryot Cell 6:2290–2302. doi:10.1128/EC.00267-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levin DE (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69:262–291. doi:10.1128/MMBR.69.2.262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lindsey R, Cowden S, Hernández-Rodríguez Y, Momany M (2010) Septins AspA and AspC are important for normal development and limit the emergence of new growth foci in the multicellular fungus Aspergillus nidulans. Eukaryot Cell 9:155–163. doi:10.1128/EC.00269-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu R, Huang H, Yang Q, Liu W-Y (2002) Purification of α-sarcin and an antifungal protein from mold (Aspergillus giganteus) by chitin affinity chromatography. Protein Expr Purif 25:50–58. doi:10.1006/prep.2001.1608

    Article  CAS  PubMed  Google Scholar 

  • Lockington RA, Borlace GN, Kelly JM (1997) Pyruvate decarboxylase and anaerobic survival in Aspergillus nidulans. Gene 191:61–67

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr L, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Luber CA, Cox J, Lauterbach H, Fancke B, Selbach M, Tschopp J, Akira S, Wiegand M, Hochrein H, O’Keeffe M, Mann M (2010) Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity 32:279–289. doi:10.1016/j.immuni.2010.01.013

    Article  CAS  PubMed  Google Scholar 

  • Marx F (2004) Small, basic antifungal proteins secreted from filamentous ascomycetes: a comparative study regarding expression, structure, function and potential application. Appl Microbiol Biotechnol 65:133–142. doi:10.1007/s00253-004-1600-z

    CAS  PubMed  Google Scholar 

  • Marx F, Binder U, Leiter E, Pócsi I (2008) The Penicillium chrysogenum antifungal protein PAF, a promising tool for the development of new antifungal therapies and fungal cell biology studies. Cell Mol Life Sci 65:445–454. doi:10.1007/s00018-007-7364-8

    Article  CAS  PubMed  Google Scholar 

  • Marx F, Haas H, Reindl M, Stöffler G, Lottspeich F, Redl B (1995) Cloning, structural organization and regulation of expression of the Penicillium chrysogenum paf gene encoding an abundantly secreted protein with antifungal activity. Gene 167:167–171

  • Moreno AB, Martínez Del Pozo A, San Segundo B (2006) Biotechnologically relevant enzymes and proteins. Antifungal mechanism of the Aspergillus giganteus AFP against the rice blast fungus Magnaporthe grisea. Appl Microbiol Biotechnol 72:883–895. doi:10.1007/s00253-006-0362-1

    Article  CAS  PubMed  Google Scholar 

  • Nakaya K, Omata K, Okahashi I, Nakamura Y, Kilkenbrock H, Ulbrich N (1990) Amino acid sequence and disulfide bridges of an antifungal protein isolated from Aspergillus giganteus. Eur J Biochem 193:31–38

    Article  CAS  PubMed  Google Scholar 

  • O’Keeffe G, Hammel S, Owens RA, Keane TM, Fitzpatrick DA, Jones GW, Doyle S (2014) RNA-seq reveals the pan-transcriptomic impact of attenuating the gliotoxin self-protection mechanism in Aspergillus fumigatus. BMC Genomics 15:894. doi:10.1186/1471-2164-15-894

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Keeffe G, Jöchl C, Kavanagh K, Doyle S (2013) Extensive proteomic remodeling is induced by eukaryotic translation elongation factor 1Bγ deletion in Aspergillus fumigatus. Protein Sci 22:1612–1622. doi:10.1002/pro.2367

    Article  PubMed Central  PubMed  Google Scholar 

  • Oberparleiter C, Kaiserer L, Haas H, Ladurner P, Andratsch M, Marx F (2003) Active internalization of the Penicillium chrysogenum antifungal protein PAF in sensitive Aspergilli. Antimicrob Agents Chemother 47:3598–3601. doi:10.1128/AAC.47.11.3598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ouedraogo JP, Hagen S, Spielvogel A, Engelhardt S, Meyer V (2011) Survival strategies of yeast and filamentous fungi against the antifungal protein AFP. J Biol Chem 286:13859–13868. doi:10.1074/jbc.M110.203588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Owens RA, Hammel S, Sheridan KJ, Jones GW, Doyle S (2014) A proteomic approach to investigating gene cluster expression and secondary metabolite functionality in Aspergillus fumigatus. PLoS One 9:e106942. doi: 10.1371/journal.pone.0106942

  • Penninckx MJ (2002) An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Res 2:295–305

    CAS  PubMed  Google Scholar 

  • Rabilloud T, Vaezzadeh AR, Potier N (2009) Power and limitations of electrophoretic. Mass Spectrom Rev 28:816–843. doi:10.1002/mas

    Article  CAS  PubMed  Google Scholar 

  • Reverberi M, Fabbri AA, Zjalic S, Ricelli A, Punelli F, Fanelli C (2005) Antioxidant enzymes stimulation in Aspergillus parasiticus by Lentinula edodes inhibits aflatoxin production. Appl Microbiol Biotechnol 69:207–215. doi:10.1007/s00253-005-1979-1

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Martín A, Acosta R, Liddell S, Núñez F, Benito MJ, Asensio MA (2010) Characterization of the novel antifungal protein PgAFP and the encoding gene of Penicillium chrysogenum. Peptides 31:541–547. doi:10.1016/j.peptides.2009.11.002

    Article  PubMed  Google Scholar 

  • Saxena M, Mukerji KG, Raj HG (1988) Positive correlation exists between glutathione S-transferase activity and aflatoxin formation in Aspergillus flavus. Biochem J 254:567–570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860. doi:10.1038/nprot.2006.468

    Article  CAS  PubMed  Google Scholar 

  • Slater AFG, Stefan C, Nobel I, Van den Dobbelsteen DJ, Orrenius S (1995) Signalling mechanisms and oxidative stress in apoptosis. Toxicol Lett 82(83):149–153

    Article  PubMed  Google Scholar 

  • Squier TC (2001) Oxidative stress and protein aggregation during biological aging. Exp Gerontol 36:1539–1550

    Article  CAS  PubMed  Google Scholar 

  • Theis T, Wedde M, Meyer V, Stahl U (2003) The antifungal protein from Aspergillus giganteus causes membrane permeabilization. Antimicrob Agents Chemother 47:588–593. doi:10.1128/AAC.47.2.588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Theis T, Marx F, Salvenmoser W, Stahl U, Meyer V (2005) New insights into the target site and mode of action of the antifungal protein of Aspergillus giganteus. Res Microbiol 156:47–56. doi:10.1016/j.resmic.2004.08.006

    Article  CAS  PubMed  Google Scholar 

  • Thevissen K, Ghazi A, De Samblanx GW, Brownlee C, Osborn RW, Broekaert WF (1996) Fungal membrane responses induced by plant defensins and thionins. J Biol Chem 271:15018–15025

    Article  CAS  PubMed  Google Scholar 

  • Thevissen K, Terras FR, Broekaert WF (1999) Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl Environ Microbiol 65:5451–5458

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu J, Chang P, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, Payne GA, Linz JE, Woloshuk CP, Bennett W, Bennett JW (2004) Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 70:1253–1262. doi:10.1128/AEM.70.3.1253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Education and Science, Ministry of Economy and Competitiveness, and FEDER (AGL2010-21623, AGL2013-45729-P). Josué Delgado was a recipient of a FPI grant from the Spanish Ministry of Education and Science (BES-2011–043422 y EEBB-I-13–06900). Rebecca A. Owens was funded by a 3U Partnership Award (http://www.3UPartnership.ie/). Mass spectrometry facilities were funded by Science Foundation Ireland (Q-Exactive; 12/RI/2346(3) and PI/11/1188) and the Irish Higher Education Authority (Agilent Ion Trap 6340).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Asensio.

Electronic supplementary material

ESM 1

(PDF 747 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado, J., Owens, R.A., Doyle, S. et al. Impact of the antifungal protein PgAFP from Penicillium chrysogenum on the protein profile in Aspergillus flavus . Appl Microbiol Biotechnol 99, 8701–8715 (2015). https://doi.org/10.1007/s00253-015-6731-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6731-x

Keywords

Navigation