Skip to main content
Log in

Microbial dynamics and properties of aerobic granules developed in a laboratory-scale sequencing batch reactor with an intermediate filamentous bulking stage

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Aerobic granules offer enhanced biological nutrient removal and are compact and dense structures resulting in efficient settling properties. Granule instability, however, is still a challenge as understanding of the drivers of instability is poorly understood. In this study, transient instability of aerobic granules, associated with filamentous outgrowth, was observed in laboratory-scale sequencing batch reactors (SBRs). The transient phase was followed by the formation of stable granules. Loosely bound, dispersed, and pinpoint seed flocs gradually turned into granular flocs within 60 days of SBR operation. In stage 1, the granular flocs were compact in structure and typically 0.2 mm in diameter, with excellent settling properties. Filaments appeared and dominated by stage 2, resulting in poor settleability. By stage 3, the SBRs were selected for larger granules and better settling structures, which included filaments that became enmeshed within the granule, eventually forming structures 2–5 mm in diameter. Corresponding changes in sludge volume index were observed that reflected changes in settleability. The protein-to-polysaccharide ratio in the extracted extracellular polymeric substance (EPS) from stage 1 and stage 3 granules was higher (2.8 and 5.7, respectively), as compared to stage 2 filamentous bulking (1.5). Confocal laser scanning microscopic (CLSM) imaging of the biomass samples, coupled with molecule-specific fluorescent staining, confirmed that protein was predominant in stage 1 and stage 3 granules. During stage 2 bulking, there was a decrease in live cells; dead cells predominated. Denaturing gradient gel electrophoresis (DGGE) fingerprint results indicated a shift in bacterial community composition during granulation, which was confirmed by 16S rRNA gene sequencing. In particular, Janthinobacterium (known denitrifier and producer of antimicrobial pigment) and Auxenochlorella protothecoides (mixotrophic green algae) were predominant during stage 2 bulking. The chitinolytic activity of Chitinophaga is likely antagonistic towards Auxenochlorella and may have contributed to stage 3 stable granule formation. Rhodanobacter, known to support complete denitrification, were predominant in stage 1 and stage 3 granules. The relative abundance of Rhodanobacter coincided with high protein concentrations in EPS, suggesting a role in microbial aggregation and granule formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adav SS, Lee DJ, Show KY, Tay JH (2008a) Aerobic granular sludge: recent advances. Biotechnol Adv 26:411–423

    Article  PubMed  CAS  Google Scholar 

  • Adav SS, Lee DJ, Tay JH (2008b) Extracellular polymeric substances and structural stability of aerobic granule. Water Res 42:1644–1650

    Article  PubMed  CAS  Google Scholar 

  • Adav SS, Lee DJ, Lai JY (2009) Functional consortium from aerobic granules under high organic loading rates. Bioresour Technol 100:3465–3470

    Article  PubMed  CAS  Google Scholar 

  • Adav SS, Lee DJ, Lai JY (2010) Potential cause of aerobic granular sludge breakdown at high organic loading rates. Appl Microbiol Biotechnol 85:1601–1610

    Article  PubMed  CAS  Google Scholar 

  • Anuar AN, Ujang Z, Loosdrecht MV, Kreuk MD (2007) Settling behaviour of aerobic granular sludge. Water Sci Technol 56:55–64

    Article  Google Scholar 

  • Bartram AK, Lynch MD, Stearns JC, Moreno-Hagelsieb G, Neufeld JD (2011) Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Appl Environ Microbiol 77:3846–3852

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Basuvaraj M, Fein J, Liss SN (2015) Protein and polysaccharide content of tightly and loosely bound extracellular polymeric substances and the development of a granular activated sludge floc. Water Res 82:104–114

    Article  PubMed  CAS  Google Scholar 

  • Beun JJ, Hendriks A, Van Loosdrecht MCM, Morgenroth E, Wilderer PA, Heijnen JJ (1999) Aerobic granulation in a sequencing batch reactor. Water Res 33:2283–2290

    Article  CAS  Google Scholar 

  • Bura R, Cheung M, Liao B, Finlayson J, Lee B, Droppo I, Leppard G, Liss S (1998) Composition of extracellular polymeric substances in the activated sludge floc matrix. Water Sci Technol 37:325–333

    Article  CAS  Google Scholar 

  • Cao J, Yuan H, Li B, Yang J (2014) Significance evaluation of the effects of environmental factors on the lipid accumulation of Chlorella minutissima UTEX 2341 under low-nutrition heterotrophic condition. Bioresour Technol 152:177–184

    Article  PubMed  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chang IS, Lee CH (1998) Membrane filtration characteristics in membrane-coupled activated sludge system e the effect of physiological states of activated sludge on membrane fouling. Desalination 120:221–233

    Article  CAS  Google Scholar 

  • Chen MY, Lee DJ, Tay JH (2007) Distribution of extracellular polymeric substances in aerobic granules. Appl Microbiol Biotechnol 73:1463–1469

    Article  PubMed  CAS  Google Scholar 

  • De Bruin L, de Kreuk M, van der Roest H, Uijterlinde C, van Loosdrecht MCM (2004) Aerobic granular sludge technology: an alternative to activated sludge? Water Sci Technol 49:11–12

    Google Scholar 

  • De Kreuk MK, Heijnen JJ, Van Loosdrecht MCM (2005) Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnol Bioeng 90:761–769

    Article  PubMed  Google Scholar 

  • Del Rio TG, Abt B, Spring S, Lapidus A, Nolan M, Tice H, Lucas S (2010) Complete genome sequence of Chitinophaga pinensis type strain (UQM 2034T). Stand Genomic Sci 2:87

    Article  Google Scholar 

  • Denkhaus E, Meisen S, Telgheder U, Wingender J (2007) Chemical and physical methods for characterisation of biofilms. Microchim Acta 158:1–27

    Article  CAS  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Eaton AD, Clesceri LS, Rice EW, Greenberg AE (eds) (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, American Water Works Association, Water Environment Federation, Washington

    Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  • Flemming H, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    PubMed  CAS  Google Scholar 

  • Flemming HC, Neu TR, Wozniak DJ (2007) The EPS matrix: the house of biofilm cells. J Bacteriol 189:7945–7947

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Green SJ, Leigh MB, Neufeld JD (2010) Denaturing gradient gel electrophoresis (DGGE) for microbial community analysis. Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 4137–4158

    Book  Google Scholar 

  • Green SJ, Prakash O, Jasrotia P, Overholt WA, Cardenas E, Hubbard D, Kostka JE (2012) Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site. Appl Environ Microbiol 78:1039–1047

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hashidoko Y, Takakai F, Toma Y, Darung U, Melling L, Tahara S, Hatano R (2008) Emergence and behaviors of acid-tolerant Janthinobacterium sp. that evolves N2O from deforested tropical peatland. Soil Biol Biochem 40:116–125

    Article  CAS  Google Scholar 

  • Henderson RK, Baker A, Parsons SA, Jefferson B (2008) Characterisation of algogenic organic matter extracted from Cyanobacteria, green algae and diatoms. Water Res 42:3435–3445

    Article  PubMed  CAS  Google Scholar 

  • Hu B, Min M, Zhou W, Li Y, Mohr M, Cheng Y, Ruan R (2012) Influence of exogenous CO2 on biomass and lipid accumulation of microalgae Auxenochlorella protothecoides cultivated in concentrated municipal wastewater. Appl Biochem Biotechnol 166:1661–1673

    Article  PubMed  CAS  Google Scholar 

  • Kim IS, Kim SM, Jang A (2008) Characterization of aerobic granules by microbial density at different COD loading rates. Bioresour Technol 99:18–25

    Article  PubMed  CAS  Google Scholar 

  • Kragelund C, Levantesi C, Borger A, Thelen K, Eikelboom D, Tandoi V, Nielsen PH (2008) Identity, abundance and ecophysiology of filamentous bacteria belonging to the Bacteroidetes present in activated sludge plants. Microbiology 154:886–894

    Article  PubMed  CAS  Google Scholar 

  • Lee CS, Kim KK, Aslam Z, Lee ST (2007) Rhodanobacter thiooxydans sp. nov., isolated from a biofilm on sulfur particles used in an autotrophic denitrification process. Int J Syst Evol Microbiol 57:1775–1779

    Article  PubMed  Google Scholar 

  • Lee DJ, Chen YY, Show KY, Whiteley CG, Tay JH (2010) Advances in aerobic granule formation and granule stability in the course of storage and reactor operation. Biotechnol Adv 28:919–934

    Article  PubMed  CAS  Google Scholar 

  • Li AJ, Zhang T, Li XY (2010) Fate of aerobic bacterial granules with fungal contamination under different organic loading conditions. Chemosphere 78:500–509

    Article  PubMed  CAS  Google Scholar 

  • Liao B, Allen D, Droppo G, Leppard G, Liss SN (2001) Surface properties of sludge and their role in bioflocculation and settleability. Water Res 35:339–350

    Article  PubMed  CAS  Google Scholar 

  • Liss SN, Liao BQ, Droppo IG, Allen DG, Leppard GG (2002) Effect of solids retention time on floc structure. Water Sci Technol 46:431–438

    PubMed  CAS  Google Scholar 

  • Liu Y, Liu QS (2006) Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors. Biotechnol Adv 24:115–127

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Tay JH (2004) State of the art of biogranulation technology for wastewater treatment. Biotechnol Adv 22:533–563

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Liu C, Edwards E, Liss SN (2006) Effect of phosphorus limitation on microbial floc structure and gene expression in activated sludge. Water Sci Technol 54:247–255

    Article  PubMed  CAS  Google Scholar 

  • Lu HF, Zheng P, Ji QX, Zhang HT, Ji JY, Wang L, Chen JW (2012) The structure, density and settlability of anammox granular sludge in high-rate reactors. Bioresour Technol 123:312–317

    Article  PubMed  CAS  Google Scholar 

  • Lynch MD, Masella AP, Hall MW, Bartram AK, Neufeld JD (2013) AXIOME: automated exploration of microbial diversity. GigaScience 2:3

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mahapatra DM, Chanakya HN, Ramachandra TV (2014) Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater. Bioresour Technol 168:142–150

    Article  PubMed  CAS  Google Scholar 

  • Mahendran B, Lishman L, Liss SN (2012) Structural, physicochemical and microbial properties of flocs and biofilms in integrated fixed-film activated sludge (IFFAS) systems. Water Res 46:5085–5101

    Article  PubMed  CAS  Google Scholar 

  • Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: paired-end assembler for Illumina sequences. BMC Bioinforma 13:31

    Article  CAS  Google Scholar 

  • McSwain B, Irvine R, Wilderer P (2004) The effect of intermittent feeding on aerobic granule structure. Water Sci Technol 49:19–25

    PubMed  CAS  Google Scholar 

  • McSwain BS, Irvine RL, Hausner M, Wilderer PA (2005) Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl Environ Microbiol 71:1051–1057

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H, Wawer C (1998) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Akkermans ADL, van Elsas JD, de Bruijn FJ (eds) Molecular microbial ecology manual. Kluwer Academic Publishers, Dordrecht, pp 1–27

    Google Scholar 

  • Pantanella F, Berlutti F, Passariello C, Sarli S, Morea C, Schippa S (2007) Violacein and biofilm production in Janthinobacterium lividum. J Appl Microbiol 102:992–999

    PubMed  CAS  Google Scholar 

  • Prakash O, Green SJ, Jasrotia P, Overholt WA, Canion A, Watson DB, Kostka JE (2012) Rhodanobacter denitrificans sp. nov., isolated from nitrate-rich zones of a contaminated aquifer. Int J Syst Evol Microbiol 62:2457–2462

    Article  PubMed  CAS  Google Scholar 

  • Raszka A, Chorvatova M, Wanner J (2006) The role and significance of extracellular polymers in activated sludge. Part I: literature review. Acta Hydrochim Hydrobiol 34:411–425

    Article  CAS  Google Scholar 

  • Sangkhobol V, Skerman VBD (1981) Chitinophaga, a new genus of chitinolytic myxobacteria. Int J Syst Bacteriol 31:285–293

    Article  Google Scholar 

  • Schwarzenbeck N, Borges JM, Wilderer PA (2005) Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor. Appl Microbiol Biotechnol 66:711–718

    Article  PubMed  CAS  Google Scholar 

  • Sheng G, Yu H, Li X (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv 28:882–894

    Article  PubMed  CAS  Google Scholar 

  • Shirata A, Tsukamoto T, Yasui H, Hata T, Hayasaka S, Kojima A, Kato H (2000) Isolation of bacteria producing bluish-purple pigment and use for dyeing. Jpn Agr Res Q 34:131–140

    Google Scholar 

  • Show KY, Lee DJ, Tay JH (2012) Aerobic granulation: advances and challenges. Appl Biochem Biotechnol 167:1622–1640

    Article  PubMed  CAS  Google Scholar 

  • Stewart JR, Brown RM (1969) Cytophaga that kills or lyses algae. Science 164:1523–1524

    Article  PubMed  CAS  Google Scholar 

  • Tay JH, Liu QS, Liu Y (2001) The role of cellular polysaccharides in the formation and stability of aerobic granules. Lett Appl Microbiol 33:222–226

    Article  PubMed  CAS  Google Scholar 

  • Wang ZW, Liu Y, Tay JH (2005) Distribution of EPS and cell surface hydrophobicity in aerobic granules. Appl Microbiol Biotechnol 69:469–473

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang J, Yang H, Wang F (2014) Mixotrophic cultivation of microalgae for biodiesel production: status and prospects. Appl Biochem Biotechnol 172:3307–3329

    Article  PubMed  CAS  Google Scholar 

  • Weissbrodt DG, Neu TR, Kuhlicke U, Rappaz Y, Holliger C (2013) Assessment of bacterial and structural dynamics in aerobic granular biofilms. Front Microbiol 4:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams J, de los Reyes F (2006) Microbial community structure of activated sludge during aerobic granulation in an annular gap bioreactor. Water Sci Technol 54:139–146

    Article  PubMed  CAS  Google Scholar 

  • Zheng YM, Yu HQ, Liu SJ, Liu XZ (2006) Formation and instability of aerobic granules under high organic loading conditions. Chemosphere 63:1791–1800

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Li Y, Min M, Hu B, Zhang H, Ma X, Ruan R (2012) Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production. Appl Energy 98:433–440

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Katja Engel for assistance with sequencing. SNL and JDN acknowledge funding from Discovery Grants from the Natural Sciences and Engineering Research Council of Canada (NSERC). SNL and HA acknowledge funding from Queen’s University and NSERC Collaborative Research and Training Experience (CREATE).

The authors declare that the research is in compliance with ethical standards, and they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Liss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aqeel, H., Basuvaraj, M., Hall, M. et al. Microbial dynamics and properties of aerobic granules developed in a laboratory-scale sequencing batch reactor with an intermediate filamentous bulking stage. Appl Microbiol Biotechnol 100, 447–460 (2016). https://doi.org/10.1007/s00253-015-6981-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6981-7

Keywords

Navigation