Skip to main content

Advertisement

Log in

Key high molecular weight PAH-degrading bacteria in a soil consortium enriched using a sand-in-liquid microcosm system

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A novel biphasic system containing mineral medium and sand coated with a biologically weathered creosote-PAH mixture was developed to specifically enrich the high molecular weight polycyclic aromatic hydrocarbon (HMW PAH)-degrading community from a creosote-polluted soil. This consortium (UBHP) removed 70 % of the total HMW PAHs and their alkyl-derivatives in 12 weeks. Based on a combined culture-dependent/independent approach, including clone library analysis, detection of catabolic genes, metabolomic profiles, and characterization of bacterial isolates, 10 phylotypes corresponding to five major genera (Sphingobium, Sphingomonas, Achromobacter, Pseudomonas, and Mycobacterium) were pointed out as key players within the community. In response to exposure to different single PAHs, members of sphingomonads were associated to the utilization of phenanthrene, fluoranthene, benzo[a]anthracene, and chrysene, while the degradation of pyrene was mainly associated to low-abundance mycobacteria. In addition to them, a number of uncultured phylotypes were detected, being of special relevance a group of Gammaproteobacteria closely related to a group previously associated with pyrene degradation that were here related to benzo(a)anthracene degradation. The overall environmental relevance of these phylotypes was confirmed by pyrosequencing analysis of the microbial community shift in the creosote-polluted soil during a lab-scale biostimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bouchez M, Blanchet D, Haeseler F (2000) Efficiency of defined strains and of soil consortia in the biodegradation of polycyclic aromatic hydrocarbon (PAH) mixtures. Biodegradation 10:429–435

    Article  Google Scholar 

  • Buckley DH, Graber JR, Schmidt TM (1998) Phylogenetic analysis of nonthermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soils. Appl Environ Microbiol 64:4333–4339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caldini G, Cenci G, Manenti R, Morozzi G (1995) The ability of an environmental isolate of Pseudomonas fluorescens to utilize chrysene and other four-ring polynuclear aromatic hydrocarbons. Appl Microbiol Biotechnol 44:225–229

    Article  CAS  Google Scholar 

  • Cébron A, Norini M-P, Beguiristain T, Leyval C (2008) Real-time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHD alpha) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J Microbiol Methods 73:148–159

    Article  PubMed  Google Scholar 

  • Dastgheib SMM, Amoozegar MA, Khajeh K, Shavandi M, Ventosa A (2012) Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Appl Microbiol Biotechnol 95:789–798

    Article  CAS  PubMed  Google Scholar 

  • DeBruyn JM, Mead TJ, Sayler GS (2012) Horizontal transfer of PAH catabolism genes in Mycobacterium: evidence from comparative genomics and isolated pyrene-degrading bacteria. Environ Sci Technol 46:99–106

    Article  CAS  PubMed  Google Scholar 

  • Edwards SJ, Kjellerup BV (2013) Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl Microbiol Biotechnol 97:9909–9921

    Article  CAS  PubMed  Google Scholar 

  • El Fantroussi S, Verschuere L, Verstraete W, Top EM (1999) Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles. Appl Environ Microbiol 65:982–988

    PubMed  PubMed Central  Google Scholar 

  • Ferrero M, Llobet-Brossa E, Lalucat J, García-Valdés E, Rosselló-Móra R, Bosch R (2002) Coexistence of two distinct copies of naphthalene degradation genes in Pseudomonas strains isolated from the western Mediterranean region. Appl Environ Microbiol 68:957–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallego S, Vila J, Tauler M, Nieto JM, Breugelmans P, Springael D, Grifoll M (2014) Community structure and PAH ring-hydroxylating dioxygenase genes of a marine pyrene-degrading microbial consortium. Biodegradation 25:543–556

    Article  CAS  PubMed  Google Scholar 

  • Gillespie IMM, Philp JC (2013) Bioremediation, an environmental remediation technology for the bioeconomy. Trends Biotechnol 31:329–332

    Article  CAS  PubMed  Google Scholar 

  • Grifoll M, Selifonov S, Gatlin CV, Chapman PJ (1995) Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds. Appl Environ Microbiol 61:3711–3723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamaki T, Suzuki M, Fudou R, Jojima Y, Kajiura T, Tabuchi A, Sen K, Shibai H (2005) Isolation of novel bacteria and actinomycetes using soil-extract agar medium. J Biosci Bioeng 99:485–492

    Article  CAS  PubMed  Google Scholar 

  • Heuer H, Krsek M, Baker P, Smalla K, Wellington EM (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai S, Johnson T, Chai B, Hashsham S, Tiedje JM (2011) Comparison of the specificities and efficacies of primers for aromatic dioxygenase gene analysis of environmental samples. Appl Environ Microbiol 77:3551–3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones M, Rodgers-Vieira E, Hu J, Aitken MD (2014) Association of growth substrates and bacterial genera with benzo[a]pyrene mineralization in contaminated soil. Environ Eng Sci 31:689–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones MD, Crandell DW, Singleton DR, Aitken MD (2011) Stable-isotope probing of the polycyclic aromatic hydrocarbon-degrading bacterial guild in a contaminated soil. Environ Microbiol 13:2623–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegradation 45:57–88

    Article  CAS  Google Scholar 

  • Kanaly RA, Harayama S (2010) Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microb Biotechnol 3:136–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanaly RA, Bartha R, Watanabe K, Harayama S (2000) Rapid mineralization of benzo[a]pyrene by a microbial consortium growing on diesel fuel. Appl Environ Microbiol 66:4205–4211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khara P, Roy M, Chakraborty J, Ghosal D, Dutta TK (2014) Functional characterization of diverse ring-hydroxylating oxygenases and induction of complex aromatic catabolic gene clusters in Sphingobium sp. PNB. FEBS Open Bio 4:290–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohlmeier S, Smits THM, Ford RM, Keel C, Harms H, Wick LY (2005) Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol 39:4640–4646

    Article  CAS  PubMed  Google Scholar 

  • Kostka JE, Prakash O, Overholt W, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77:7962–7974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunihiro M, Ozeki Y, Nogi Y, Hamamura N, Kanaly RA (2013) Benz[a]anthracene biotransformation and production of ring fission products by Sphingobium sp. strain KK22. Appl Environ Microbiol 79:4410–4420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kweon O, Kim S-J, Freeman JP, Song J, Baek S, Cerniglia CE (2010) Substrate specificity and structural characteristics of the novel Rieske nonheme iron aromatic ring-hydroxylating oxygenases NidAB and NidA3B3 from Mycobacterium vanbaalenii PYR-1. MBio 1(2):e00135–e00110

    Article  PubMed  PubMed Central  Google Scholar 

  • Kweon O, Kim S-J, Kim DW, Kim JM, Kim H-L, Ahn Y, Sutherland JB, Cerniglia CE (2014) Pleiotropic and epistatic behavior of a ring-hydroxylating oxygenase system in the polycyclic aromatic hydrocarbon metabolic network from Mycobacterium vanbaalenii PYR-1. J Bacteriol 196:3503–3515

    Article  PubMed  PubMed Central  Google Scholar 

  • Lafortune I, Juteau P, Déziel E, Lépine F, Beaudet R, Villemur R (2009) Bacterial diversity of a consortium degrading high-molecular-weight polycyclic aromatic hydrocarbons in a two-liquid phase biosystem. Microb Ecol 57:455–468

    Article  CAS  PubMed  Google Scholar 

  • Leys NM, Bastiaens L, Verstraete W, Springael D (2005a) Influence of the carbon/nitrogen/phosphorus ratio on polycyclic aromatic hydrocarbon degradation by Mycobacterium and Sphingomonas in soil. Appl Microbiol Biotechnol 66:726–736

    Article  CAS  PubMed  Google Scholar 

  • Leys NM, Ryngaert A, Bastiaens L, Wattiau P, Top EM, Verstraete W, Springael D (2005b) Occurrence and community composition of fast-growing Mycobacterium in soils contaminated with polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 51:375–388

    Article  CAS  PubMed  Google Scholar 

  • Leys NMEJ, Ryngaert A, Bastiaens L, Verstraete W, Top EM, Springael D (2004) Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Appl Environ Microbiol 70:1944–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Liedekerke M, Prokop G, Rabl-berger S, Kibblewhite M (2014) Progress in the management of contaminated sites in Europe. In: JRC Reference Reports Report EUR 26376 EN

    Google Scholar 

  • Lladó S, Gràcia E, Solanas AM, Viñas M (2013) Fungal and bacterial microbial community assessment during bioremediation assays in an aged creosote-polluted soil. Soil Biol Biochem 67:114–123

    Article  Google Scholar 

  • López Z, Vila J, Grifoll M (2005) Metabolism of fluoranthene by mycobacterial strains isolated by their ability to grow in fluoranthene or pyrene. J Ind Microbiol Biotechnol 32:455–464

    Article  PubMed  Google Scholar 

  • López Z, Vila J, Minguillón C, Grifoll M (2006) Metabolism of fluoranthene by Mycobacterium sp. strain AP1. Appl Microbiol Biotechnol 70:747–756

    Article  PubMed  Google Scholar 

  • López Z, Vila J, Ortega-Calvo JJ, Grifoll M (2008) Simultaneous biodegradation of creosote-polycyclic aromatic hydrocarbons by a pyrene-degrading Mycobacterium. Appl Microbiol Biotechnol 78:739–739

    Article  Google Scholar 

  • Martin F, Torelli S, Le Paslier D, Barbance A, Martin-Laurent F, Bru D, Geremia R, Blake G, Jouanneau Y (2012) Betaproteobacteria dominance and diversity shifts in the bacterial community of a PAH-contaminated soil exposed to phenanthrene. Environ Pollut 162:345–353

    Article  CAS  PubMed  Google Scholar 

  • Moody JD, Freeman JP, Fu PP, Cerniglia CE (2004) Degradation of benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 70:340–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller JG, Chapman PJ, Blattmann BO, Pritchard PH (1990) Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl Environ Microbiol 56:1079–1086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega-Calvo JJ, Birman I, Alexander M (1995) Effect of varying the rate of partitioning of phenanthrene in nonaqueous-phase liquids on biodegradation in soil slurries. Environ Sci Technol 29:2222–2225

    Article  CAS  PubMed  Google Scholar 

  • Peng R-H, Xiong A-S, Xue Y, Fu X-Y, Gao F, Zhao W, Tian Y-S, Yao Q-H (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955

    Article  CAS  PubMed  Google Scholar 

  • Prince RC, Elmendorf DL, Lute JR, Hsu CS, Halth CE, Senius JD, Dechert GJ, Douglas GS, Butler EL (1994) 17α(H),21β(H)-hopane as a conserved internal marker for estimating the biodegradation of crude oil. Environ Sci Technol 28:142–145

    Article  CAS  PubMed  Google Scholar 

  • Roy M, Khara P, Dutta TK (2012) Meta-cleavage of hydroxynaphthoic acids in the degradation of phenanthrene by Sphingobium sp. strain PNB. Microbiology 158:685–695

    Article  CAS  PubMed  Google Scholar 

  • Schuler L, Jouanneau Y, Chadhain SMN, Meyer C, Pouli M, Zylstra GJ, Hols P, Agathos SN (2009) Characterization of a ring-hydroxylating dioxygenase from phenanthrene-degrading Sphingomonas sp. strain LH128 able to oxidize benz[a]anthracene. Appl Microbiol Biotechnol 83:465–475

    Article  CAS  PubMed  Google Scholar 

  • Singleton DR, Sangaiah R, Gold A, Ball LM, Aitken MD (2006) Identification and quantification of uncultivated Proteobacteria associated with pyrene degradation in a bioreactor treating PAH-contaminated soil. Environ Microbiol 8:1736–1745

    Article  CAS  PubMed  Google Scholar 

  • Sohn JH, Kwon KK, Kang J-H, Jung H-B, Kim S-J (2004) Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 54:1483–1487

    Article  CAS  PubMed  Google Scholar 

  • Stolz A (2009) Molecular characteristics of xenobiotic-degrading sphingomonads. Appl Microbiol Biotechnol 81:793–811

    Article  CAS  PubMed  Google Scholar 

  • Sun R, Jin J, Sun G, Liu Y, Liu Z (2010) Screening and degrading characteristics and community structure of a high molecular weight polycyclic aromatic hydrocarbon-degrading bacterial consortium from contaminated soil. J Environ Sci 22:1576–1585

    Article  CAS  Google Scholar 

  • Vanbroekhoven K, Ryngaert A, Bastiaens L, Wattiau P, Vancanneyt M, Swings J, De Mot R, Springael D (2004) Streptomycin as a selective agent to facilitate recovery and isolation of introduced and indigenous Sphingomonas from environmental samples. Environ Microbiol 6:1123–1136

    Article  CAS  PubMed  Google Scholar 

  • Vila J, Grifoll M (2009) Actions of Mycobacterium sp. strain AP1 on the saturated- and aromatic-hydrocarbon fractions of fuel oil in a marine medium. Appl Environ Microbiol 75:6232–6239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vila J, López Z, Sabaté J, Minguillón C, Solanas AM, Grifoll M (2001) Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: actions of the isolate on two- and three-ring polycyclic aromatic hydrocarbons. Appl Environ Microbiol 67:5497–5505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vila J, Tauler M, Grifoll M (2015) Bacterial PAH degradation in marine and terrestrial habitats. Curr Opin Biotechnol 33:95–102

    Article  CAS  PubMed  Google Scholar 

  • Viñas M, Sabaté J, Espuny MJ, Solanas AM (2005) Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl Environ Microbiol 71:7008–7018

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weissenfels WD, Beyer M, Klein J (1990) Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures. Appl Microbiol Biotechnol 32:479–484

    Article  CAS  PubMed  Google Scholar 

  • Wrenn BA, Venosa AD (1996) Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure. Can J Microbiol 42:252–258

    Article  CAS  PubMed  Google Scholar 

  • Wright ES, Yilmaz LS, Noguera DR (2012) DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 78:717–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yabuuchi E, Kawamura Y, Kosako Y, Ezaki T (1998) Emendation of genus Achromobacter and Achromobacter xylosoxidans (Yabuuchi and Yano) and proposal of Achromobacter ruhlandii (Packer and Vishniac) comb. nov., Achromobacter piechaudii (Kiredjian et al.) comb. nov., and Achromobacter xylosoxidans subsp. denitrificans (Rüger and Tan) comb. nov. Microbiol Immunol 42:429–438

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

During the writing of this manuscript, our funding included two grants (CGL2010-22068-C02-02, CGL2013-44554-R) and a fellowship (to M.T., BES-2011-045106) from the Spanish Ministry of Economy and Competitiveness. The authors are members of the Xarxa de Referencia d’R+D+I en Biotecnologia (XRB) of the Generalitat de Catalunya. We are grateful to Asunción Marín (Scientific and Technological Centers of the University of Barcelona) for the acquisition of GC-MS data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Grifoll.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This study was funded by the Spanish Ministry of Economy and Competitiveness (grant numbers CGL2010-22,068-C02-02 and CGL2013-44,554-R; and fellowship to M.T. number BES-2011-045,106).

Conflict of interest

Margalida Tauler declares that she has no conflict of interest. Joaquim Vila declares that he has no conflict of interest. José Maria Nieto declares that he has no conflict of interest. Magdalena Grifoll declares that she has no conflict of interest.

Electronic Supplementary material

ESM 1

(PDF 386 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tauler, M., Vila, J., Nieto, J.M. et al. Key high molecular weight PAH-degrading bacteria in a soil consortium enriched using a sand-in-liquid microcosm system. Appl Microbiol Biotechnol 100, 3321–3336 (2016). https://doi.org/10.1007/s00253-015-7195-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7195-8

Keywords

Navigation