Skip to main content

Advertisement

Log in

Critical analysis of hydrogen production from mixed culture fermentation under thermophilic condition (60 °C)

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bio-hydrogen production from mixed culture fermentation (MCF) of glucose was studied by conducting a comprehensive product measurement and detailed mass balance analysis of their contributions to the final H2 yield. The culture used in this study was enriched on glucose at 60 °C through a sequential batch operation consisting of daily glucose feeds, headspace purging and medium replacement every third day in serum bottles for over 2 years. 2-Bromoethanesulfonate (BES) was only required during the first three 3-day cycles to permanently eliminate methanogenic activity. Daily glucose feeds were fully consumed within 24 h, with a persistent H2 yield of 2.7 ± 0.1 mol H2/mol glucose, even when H2 was allowed to accumulate over the 3-day cycle. The measured H2 production exceeded by 14 % the theoretical production of H2 associated with the fermentation products, dominated by acetate and butyrate. Follow-up experiments using acetate with a 13C-labelled methyl group showed that the excess H2 production was not due to acetate oxidation. Chemical formula analysis of the biomass showed a more reduced form of C5H11.8O2.1N1.1 suggesting that the biomass formation may even consume produced H2 from fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic Local Alignment Search Tool. J Mol Biol 215(3):403-410

    Article  CAS  PubMed  Google Scholar 

  • Amann RI (1995) In situ identification of microorganisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In: Akkermans ADL, van Elsas JD, de Bruijn FJ (eds) Molecular microbial ecology manual. Kluwer Academic Publications, London, pp. MMEM-3.3.6/1-MMMEM-3.3.6/15.

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16s ribosomal-RNA-targeted oligonucleotide probes with flow-cytometry for analyzing mixed microbial-populations. Environ. Microbiol. 56(6):1919-1925

    CAS  Google Scholar 

  • Arcos-Hernandez MV, Gurieff N, Pratt S, Magnusson P, Werker A, Vargas A, Lant P (2010) Rapid quantification of intracellular PHA using infrared spectroscopy: an application in mixed cultures. J Biotechnol 150(3):372-379. doi:10.1016/j.jbiotec.2010.09.939

    Article  CAS  PubMed  Google Scholar 

  • Bastidas-Oyanedel J-R, Bonk F, Thomsen MH, Schmidt JE (2015) Dark fermentation biorefinery in the present and future (bio) chemical industry. Rev. Environ Sci Biotechnol 14(3):473-498

    Article  CAS  Google Scholar 

  • Bastidas-Oyanedel J-R, Mohd-Zaki Z, Zeng RJ, Bernet N, Pratt S, Steyer J-P, Batstone DJ (2012) Gas controlled hydrogen fermentation. Bioresour Technol 110:503-509

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335-336. doi:10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciranna A, Pawar S, Santala V, Karp M, van Niel E (2014) Assessment of metabolic flux distribution in the thermophilic hydrogen producer Caloramator celer as affected by external pH and hydrogen partial pressure. Microb Cell Factories 13(1):1-15. doi:10.1186/1475-2859-13-48.

    Article  Google Scholar 

  • Clarke WP, Alibardi L (2010) Special issue: Anaerobic digestion (AD) of solid waste—anaerobic digestion. Waste Manage 30(10):1761-1859. doi:10.1016/j.wasman.2010.06.019

    Article  CAS  Google Scholar 

  • Clesceri LS, Greenberg AE, Eaton AD, Franson MAH, Association APH, Association AWW, Federation WE (eds)(1998) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC:

  • Daims H, Bruhl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22(3):434-444

    Article  CAS  PubMed  Google Scholar 

  • Daims H, Lucker S, Wagner M (2006) Daime, a novel image analysis program for microbial ecology and biofilm research. Environ. Microbiol. 8(2):200-213. doi:10.1111/j.1462-2920.2005.00880.x.

    Article  CAS  PubMed  Google Scholar 

  • Dietrich G, Weiss N, Winter J (1988) Acetothermus paucivorans, gen nov., sp. nov, a stricly anaerobic, thermophilic bacterium from sewage sludge, fermenting hexoses to acetate, CO2 and H2. Syst Appl Microbiol 10(2):174-179

    Article  Google Scholar 

  • Engelbrektson A, Kunin V, Wrighton KC, Zvenigorodsky N, Chen F, Ochman H, Hugenholtz P (2010) Experimental factors affecting PCR-based estimates of microbial species richness and evenness. Isme J 4(5):642-647. doi:10.1038/ismej.2009.153

  • Fang HHP, Liu H (2002) Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour Technol 82(1):87-93

    Article  CAS  PubMed  Google Scholar 

  • Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol. 27(5):287-297. doi:10.1016/j.tibtech.2009.02.004

    Article  CAS  PubMed  Google Scholar 

  • Hawkes FR, Dinsdale R, Hawkes DL, Hussy I (2002) Sustainable fermentative hydrogen production: challenges for process optimisation. Int J Hydrogen Energy 27:11-12

    Article  Google Scholar 

  • Kendall C, McDonnell JJ (eds)(1998) Isotope tracers in catchment hydrology. Elsevier, New York.

  • Kim BK, Daniels L (1991) Unexpected errors in gas-chromatographic analysis of methane production by thermophilic bacteria. Appl Environ Microbiol 57(6):1866-1869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D-H, Kim M-S (2011) Hydrogenases for biological hydrogen production. Bioresour Technol 102(18):8423-8431. doi:10.1016/j.biortech.2011.02.113

    Article  CAS  PubMed  Google Scholar 

  • Kim IS, Hwang MH, Jang NJ, Hyun SH, Lee ST (2004) Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process. Int. J. Hydrogen Energy 29(11):1133-1140. doi:10.1016/j.ijhydene.2003.08.017

    CAS  Google Scholar 

  • Kleerebezem R, van Loosdrecht MCM (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18(3):207-212. doi:10.1016/j.copbio.2007.05.001

    Article  CAS  PubMed  Google Scholar 

  • Kleerebezem R, Joosse B, Rozendal R, Loosdrecht MCM (2015) Anaerobic digestion without biogas? Rev. Environ Sci Biotechnol 14(4):787-801. doi:10.1007/s11157-015-9374-6

    Article  CAS  Google Scholar 

  • de Kok S, Meijer J, van Loosdrecht MCM, Kleerebezem R (2013) Impact of dissolved hydrogen partial pressure on mixed culture fermentations. Appl Microbiol Biotechnol 97(6):2617-2625. doi:10.1007/s00253-012-4400-x

    Article  CAS  PubMed  Google Scholar 

  • Kotsopoulos TA, Zeng RJ, Angelidaki I (2006) Biohydrogen production in granular up-flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyper-thermophilic temperature (70 degrees C). Biotech Bioeng 94(2):296-302

    Article  CAS  Google Scholar 

  • Kraemer JT, Bagley DM (2006) Supersaturation of dissolved H(2) and CO(2) during fermentative hydrogen production with N(2) sparging. Biotechnol Lett 28(18):1485-1491. doi:10.1007/s10529-006-9114-7

    Article  CAS  PubMed  Google Scholar 

  • Kraemer JT, Bagley DM (2007) Improving the yield from fermentative hydrogen production. Biotechnol. Lett 29(5):685-695. doi:10.1007/s10529-006-9299-9

    Article  CAS  PubMed  Google Scholar 

  • Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12(1):118-123. doi:10.1111/j.1462-2920.2009.02051.x

    Article  CAS  PubMed  Google Scholar 

  • Lay JJ (2000) Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotech Bioeng 68(3):269-278. doi:10.1002/(sici)1097-0290(20,000,505)68:3 < 269::aid-bit5 > 3.0.co;2-t

    Article  CAS  Google Scholar 

  • Li CL, Fang HHP (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev. Env Sci Technol 37(1):1-39. doi:10.1080/10,643,380,600,729,071

    Article  Google Scholar 

  • Li S, Chou HH (2004) Lucy 2: an interactive DNA sequence quality trimming and vector removal tool. Bioinf 20(16):2865-2866. doi:10.1093/bioinformatics/bth302

    Article  CAS  Google Scholar 

  • Li Z, Wang H, Tang ZX, Wang XF, Bai JB (2008) Effects of pH value and substrate concentration on hydrogen production from the anaerobic fermentation of glucose. Int J Hydrogen Energy 33(24):7413-7418. doi:10.1016/j.ijhydene.2008.09.048

    Article  CAS  Google Scholar 

  • Loy A, Arnold R, Tischler P, Rattei T, Wagner M, Horn M (2008) probeCheck—a central resource for evaluating oligonucleotide probe coverage and specificity. Environ Microbiol 10(10):2894-2898. doi:10.1111/j.1462-2920.2008.01706.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal B, Nath K, Das D (2006) Improvement of biohydrogen production under decreased partial pressure of H-2 by Enterobacter cloacae. Biotechnol Lett 28(11):831-835. doi:10.1007/s10529-006-9008-8

    Article  CAS  PubMed  Google Scholar 

  • Manz W, Amann R, Ludwig W, Wagner M, Schleifer KH (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria—problems and solutions. Syst Appl Microbiol 15(4):593-600

    Article  Google Scholar 

  • Mizuno O, Dinsdale R, Hawkes FR, Hawkes DL, Noike T (2000) Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol 73(1):59-65

    Article  CAS  Google Scholar 

  • Nandi R, Sengupta S (1998) Microbial production of hydrogen: an overview. Crit Rev. Microbiol 24(1):61-84

    Article  CAS  PubMed  Google Scholar 

  • Nath K, Das D (2004) Improvement of fermentative hydrogen production: various approaches. Appl. Microbiol. Biotechnol. 65(5):520-529. doi:10.1007/s00253-004-1644-0

    Article  CAS  PubMed  Google Scholar 

  • O-Thong S, Prasertsan P, Karakashev D, Angelidaki I (2008a) 16S rRNA-targeted probes for specific detection of Thermoanaerobacterium spp., Thermoanaerobacterium thermosaccharolyticum, and Caldicellulosiruptor spp. by fluorescent in situ hybridization in biohydrogen producing systems. Int. J. Hydrogen Energy 33(21):6082-6091. doi:10.1016/j.ijhydene.2008.07.094

  • O-Thong S, Prasertsan P, Karakashev D, Angelidaki I (2008b) Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2. Int. J. Hydrogen Energy 33(4):1204-1214. doi:10.1016/j.ijhydene.2007.12.015

  • Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Damste JSS, Op den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nat. 440(7086):918-921

    Article  CAS  Google Scholar 

  • Rayment GE, Higginson FR (1992) The Australian handbook of soil and water chemical methods. Inkata Press, Melbourne

    Google Scholar 

  • Ren N, Cao G, Wang A, Lee D-J, Guo W, Zhu Y (2008) Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrogen Energy 33(21):6124-6132. doi:10.1016/j.ijhydene.2008.07.107

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed. edn. Cold Springs Harbour Press, Cold Springs Harbour, N.Y.

    Google Scholar 

  • Schroder C, Selig M, Schonheit P (1994) Glucose fermentation to acetate, CO2 ad H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima involvment of the Embden Meyerhof pathway. Arch Microbiol 161(6):460-470

    CAS  Google Scholar 

  • Soutschek E, Winter J, Schindler F, Kandler O (1984) Acetomicrobium flavidum, gen-nov, sp-nov, a thermophilic, anaerobic bacterium from sewage sludge, forming acetate, CO2 and H2 from glucose. Syst Appl Microbiol 5(3):377-390

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28(10):2731-2739. doi:10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tapia-Venegas E, Ramirez-Morales JE, Silva-Illanes F, Toledo-Alarcón J, Paillet F, Escudie R, Lay C-H, Chu C-Y, Leu H-J, Marone A, Lin C-Y, Kim D-H, Trably E, Ruiz-Filippi G (2015) Biohydrogen production by dark fermentation: scaling-up and technologies integration for a sustainable system. Rev. Environ Sci Biotechnol 14(4):761-785. doi:10.1007/s11157-015-9383-5

    Article  CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotropic anaerobic bacteria. Bacteriol Rev. 41(1):100-180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama H, Waki M, Moriya N, Yasuda T, Tanaka Y, Haga K (2007) Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Appl Microbiol Biotechnol 74(2):474-483. doi:10.1007/s00253-006-0647-4

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Chen Y, Dai K, Shen N, Zeng RJ (2015) The glucose metabolic distribution in thermophilic (55 degrees C) mixed culture fermentation: a chemostat study. Int J Hydrogen Energy 40(2):919-926. doi:10.1016/j.ijhydene.2014.11.098

    Article  CAS  Google Scholar 

  • Zhang F, Chen Y, Dai K, Zeng R (2014) The chemostat study of metabolic distribution in extreme-thermophilic (70 °C) mixed culture fermentation. Appl Microbiol Biotechnol 98(24):10,267-10,273. doi:10.1007/s00253-014-6157-x

    Article  CAS  Google Scholar 

  • Zhao BH, Yue ZB, Zhao QB, Mu Y, Yu HQ, Harada H, Li YY (2008) Optimization of hydrogen production in a granule-based UASB reactor. Int J Hydrogen Energy 33(10):2454-2461. doi:10.1016/j.ijhydene.2008.03.008

    Article  CAS  Google Scholar 

  • Zheng H, O’Sullivan C, Mereddy R, Zeng RJ, Duke M, Clarke WP (2010) Experimental and theoretical investigation of diffusion processes in a membrane anaerobic reactor for bio-hydrogen production. Int J Hydrogen Energy 35(11):5301-5311

    Article  CAS  Google Scholar 

  • Zheng H, RJ Z, Angelidaki I (2008) Biohydrogen production from glucose in upflow biofilm reactors with plastic carriers under extreme thermophilic conditions (70 degrees C). Biotech Bioeng 100(5):1034-1038. doi:10.1002/bit.21826

    Article  CAS  Google Scholar 

  • Zheng H, Zeng RJ, Duke MC, O’Sullivan CA, Clarke WP (2015) Changes in glucose fermentation pathways by an enriched bacterial culture in response to regulated dissolved H-2 concentrations. Biotech Bioeng 112(6):1177-1186. doi:10.1002/bit.25525

    Article  CAS  Google Scholar 

  • Zinder SH, Koch M (1984) Non-aceticlastic methanogenesis from acetate- acetate oxidation by a thermophilic syntrophic coculture. Arch Microbiol 138(3):263-272

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the Australian Research Council Discovery Project DP0774669, Natural Science Foundation of China (50978244). National Hi-Technology Development 863 Program of China (2011AA060901), the Collaborative Innovation Center of Suzhou Nano Science and Technology, the Program for Changjiang Scholars and Innovative Research Team in University and the Fundamental Research Funds for the Central Universities (wk2060190040)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raymond J. Zeng or William P. Clarke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Zeng, R.J., O’Sullivan, C. et al. Critical analysis of hydrogen production from mixed culture fermentation under thermophilic condition (60 °C). Appl Microbiol Biotechnol 100, 5165–5176 (2016). https://doi.org/10.1007/s00253-016-7482-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7482-z

Keywords

Navigation