Skip to main content
Log in

Exploiting racemases

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Chiral resolutions of racemic mixtures are limited to a theoretical yield of 50 %. This yield can be doubled by integration of a step-wise or continuous racemization of the non-desired enantiomer. Many of the different routes along which the racemization step can be conducted require harsh treatments and are therefore often incompatible with the highly functionalized state of many compounds relevant for the life science industries. Employing enzymatic catalysis for racemization can therefore be highly beneficial. Racemases allow racemization in one reaction step. Most representatives from this group are found in the domain of amino acid or amino acid derivative racemization, with few other examples, notably the racemization of mandelic acid. Corresponding to the importance of enantiospecific conversion of amino acid precursor racemates for the production of enantiopure amino acids, the most important biotechnological use for racemases is the racemization of such precursors. However, alternative uses, in particular for mandelate and amino acid racemases, are emerging. Here, we summarize the natural roles of racemases and their occurrence, the applications, and the biochemistry and engineering of this promising class of biocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed SA, Esaki N, Tanaka H, Soda K (1983) Racemization of α-Amino-δ-valerolactam catalyzed by α-Amino-ε-caprolactam racemase from Achromobacter obae. Agric Biol Chem 47:1149–1150

  • Asano Y, Endo K (1988) Amino acid racemase with broad substrate specificity, its properties and use in phenylalanine racemization. Appl Microbiol Biotechnol 29(6):523–527

    Article  CAS  Google Scholar 

  • Asano Y, Hölsch K (2012) Isomerizations enzyme catalysis in organic synthesis. Wiley-VCH Verlag GmbH & Co. KGaA, pp 1607–1684. doi:10.1002/9783527639861.ch39

  • Asano Y, Yamaguchi S (2005) Discovery of amino acid amides as new substrates for α-amino-epsilon-caprolactam racemase from Achromobacter obae. J Mol Catal B Enzym 36:22–29

    Article  CAS  Google Scholar 

  • Bae HS, Lee SG, Hong SP, Kwak MS, Esaki N, Soda K, Sung MH (1999) Production of aromatic D-amino acids from α-keto acids and ammonia by coupling of four enzyme reactions. J Mol Catal B Enzym 6:241–247

    Article  CAS  Google Scholar 

  • Bae HS, Hong SP, Lee SG, Kwak MS, Esaki N, Sung MH (2002) Application of a thermostable glutamate racemase from Bacillus sp SK-1 for the production of D-phenylalanine in a multi-enzyme system. J Mol Catal B Enzym 17:223–233

    Article  CAS  Google Scholar 

  • Baldea M (2015) From process integration to process intensification. Comput Chem Eng 81:104–114

    Article  CAS  Google Scholar 

  • Bechtold M, Makart S, Heinemann M, Panke S (2006) Integrated operation of continuous chromatography and biotransformations for the generic high yield production of fine chemicals. J Biotechnol 124:146–162

    Article  CAS  PubMed  Google Scholar 

  • Bechtold M, Makart S, Reiss R, Alder P, Panke S (2007) Model-based characterization of an amino acid racemase from Pseudomanas putida DSM 3263 for application in medium-constrained continuous processes. Biotechnol Bioeng 98:812–824

    Article  CAS  PubMed  Google Scholar 

  • Bhaumik P, Kursula P, Ratas V, Conzelmann E, Hiltunen JK, Schmitz W, Wierenga RK (2003) Crystallization and preliminary X-ray diffraction studies of an α-methylacyl-CoA racemase from Mycobacterium tuberculosis. Acta Crystallogr Sect D: Biol Crystallogr 59:353–355

    Article  Google Scholar 

  • Bodanszky M, Perlman D (1969) Peptide Antibiotics. Science 163:352–358

    Article  CAS  PubMed  Google Scholar 

  • Bosshart A, Panke S, Bechtold M (2013) Systematic optimization of interface interactions increases the thermostability of a multimeric enzyme. Angew Chem Int Ed 52:9673–9676

    Article  CAS  Google Scholar 

  • Bourque JR, Bearne SL (2007) Mutational analysis of the active site flap (20s loop) of mandelate racemase. Biochemistry 47:566–578

    Article  PubMed  Google Scholar 

  • Buschiazzo A, Goytia M, Schaeffer F, Degrave W, Shepard W, Grégoire C, Chamond N, Cosson A, Berneman A, Coatnoan N, Alzari PM, Minoprio P (2006) Crystal structure, catalytic mechanism, and mitogenic properties of Trypanosoma cruzi proline racemase. Proc Natl Acad Sci U S A 103:1705–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caboche S, Pupin M, Leclere V, Fontaine A, Jacques P, Kucherov G (2008) NORINE: a database of nonribosomal peptides. Nucleic Acids Res 36:D326–D331

    Article  CAS  PubMed  Google Scholar 

  • Caboche S, Leclere V, Pupin M, Kucherov G, Jacques P (2010) Diversity of monomers in nonribosomal peptides: towards the prediction of origin and biological activity. J Bacteriol 192:5143–5150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakiath C, Lyons MJ, Kozak RE, Laufer CS (2009) Thermal stabilization of Erwinia chrysanthemi pectin methylesterase A for application in a sugar beet pulp biorefinery. Appl Environ Microbiol 75:7343–7349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H-P, Lin C-F, Lee Y-J, Tsay S-S, Wu S-H (2000) Purification and properties of ornithine racemase from Clostridium sticklandii. J Bacteriol 182:2052–2054

  • Conti E, Stachelhaus T, Marahiel MA, Brick P (1997) Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin. S EMBO J 16:4174–4183

    Article  CAS  PubMed  Google Scholar 

  • Conti P, Tamborini L, Pinto A, Blondel A, Minoprio P, Mozzarelli A, De Micheli C (2011) Drug discovery targeting amino acid racemases. Chem Rev 111:6919–6946

    Article  CAS  PubMed  Google Scholar 

  • Counago R, Davlieva M, Strych U, Hill R, Krause K (2009) Biochemical and structural characterization of alanine racemase from Bacillus anthracis (Ames). BMC Struct Biol 9:53

    Article  PubMed  PubMed Central  Google Scholar 

  • Courvalin P (2006) Vancomycin resistance in gram-positive cocci. Clin Infect Dis 42:S25–S34

    Article  CAS  PubMed  Google Scholar 

  • Crosby J (1991) Synthesis of optically-active compounds—a large-scale perspective. Tetrahedron 47:4789–4846

    Article  CAS  Google Scholar 

  • Ebbers EJ, Ariaans GJA, Houbiers JPM, Bruggink A, Zwanenburg B (1997) Controlled racemization of optically active organic compounds: prospects for asymmetric transformation. Tetrahedron 53:9417–9476

    Article  CAS  Google Scholar 

  • Eijsink VGH, Bjork A, Gaseidnes S, Sirevag R, Synstad B, van den Burg B, Vriend G (2004) Rational engineering of enzyme stability. J Biotechnol 113:105–120

    Article  CAS  PubMed  Google Scholar 

  • Eijsink VGH, Gaseidnes S, Borchert TV, van den Burg B (2005) Directed evolution of enzyme stability. Biomol Eng 22:21–30

    Article  CAS  PubMed  Google Scholar 

  • Espaillat A, Carrasco-López C, Bernardo-García N, Pietrosemoli N, Otero LH, Álvarez L, de Pedro MA, Pazos F, Davis BM, Waldor MK, Hermoso JA, Cava F (2014) Structural basis for the broad specificity of a new family of amino-acid racemases. Acta Crystallogr D Biol Crystallogr 70:79–90

    Article  CAS  PubMed  Google Scholar 

  • Felfer U, Goriup M, Koegl MF, Wagner U, Larissegger-Schnell B, Faber K, Kroutil W (2005) The substrate spectrum of mandelate racemase: minimum structural requirements for substrates and substrate model. Adv Synth Catal 347:951–961

    Article  CAS  Google Scholar 

  • Ferrer M, Golyshina O, Beloqui A, Golyshin PN (2007) Mining enzymes from extreme environments. Curr Opin Microbiol 10:207–214

    Article  CAS  PubMed  Google Scholar 

  • Fisher LM, Albery WJ, Knowles JR (1986) Energetics of proline racemase: racemization of unlabeled proline in the unsaturated, saturated, and oversaturated regimes. Biochemistry 25:2529–2537

    Article  CAS  PubMed  Google Scholar 

  • Fuereder M, Majeed IN, Panke S, Bechtold M (2014) Model-based identification of optimal operating conditions for amino acid simulated moving bed enantioseparation using a macrocyclic glycopeptide stationary phase. J Chromatog A 1346:34–42

    Article  CAS  Google Scholar 

  • Fuereder M, Femmer C, Storti G, Panke S, Bechtold M (2016) Integration of simulated moving bed chromatography and enzymatic racemization for the production of single enantiomers. Chem Eng Sci. doi:10.1016/j.ces.2016.05.033, Available online 16 June 2016

    Google Scholar 

  • Fujii N (2002) D-amino acids in living higher organisms. Orig Life Evol Biosph 32:103–127

    Article  CAS  PubMed  Google Scholar 

  • Fukumura T (1973) Process for preparing L-lysine. Google Patents

  • Fukumura T (1977) Enzymatic conversion of DL-α-Amino-ε-caprolactam into L-Lysine. 4. Partial-purification and some properties of α-Amino-ε-caprolactam-racemizing enzyme from Achromobacter obae. Agric Biol Chem 41:1509–1510

    CAS  Google Scholar 

  • Gao XZ, Ma QY, Zhu HL (2015) Distribution, industrial applications, and enzymatic synthesis of D-amino acids. Appl Microbiol Biotechnol 99:3341–3349

    Article  CAS  PubMed  Google Scholar 

  • Gaseidnes S, Synstad B, Jia XH, Kjellesvik H, Vriend G, Eijsink VGH (2003) Stabilization of a chitinase from Serratia marcescens by Gly -> Ala and Xxx -> Pro mutations. Protein Eng 16:841–846

    Article  CAS  PubMed  Google Scholar 

  • Goffin P, Deghorain M, Mainardi J-L, Tytgat I, Champomier-Verges M-C, Kleerebezem M, Hols P (2005) Lactate racemization as a rescue pathway for supplying D-lactate to the cell wall biosynthesis machinery in Lactobacillus plantarum. J Bacteriol 187:6750–6761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto M (2010) Crystal structure of serine racemase that produces neurotransmitter D-serine for stimulation of the NMDA receptor. J Crystallogr 52:120–124, Society of Japan

    CAS  Google Scholar 

  • Goto M, Yamauchi T, Kamiya N, Miyahara I, Yoshimura T, Mihara H, Kurihara T, Hirotsu K, Esaki N (2009) Crystal structure of a homolog of mammalian serine racemase from Schizosaccharomyces pombe. J Biol Chem 284:25944–25952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gribenko AV, Patel MM, Liu J, McCallum SA, Wang CY, Makhatadze GI (2009) Rational stabilization of enzymes by computational redesign of surface charge-charge interactions. Proc Natl Acad Sci U S A 106:2601–2606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He M (2006) Pipecolic acid in microbes: biosynthetic routes and enzymes. J Ind Microbiol Biotechnol 33:401–407

    Article  CAS  PubMed  Google Scholar 

  • Huerta FF, Minidis ABE, Backvall J-E (2001) Racemisation in asymmetric synthesis. Dynamic kinetic resolution and related processes in enzyme and metal catalysis. Chem Soc Rev 30:321–331

    Article  CAS  Google Scholar 

  • Hwang KY, Cho C-S, Kim SS, Sung H-C, Yu YG, Cho Y (1999) Structure and mechanism of glutamate racemase from Aquifex pyrophilus. Nat Struct Mol Biol 6:422–426

    Article  CAS  Google Scholar 

  • Ishikawa T, Watabe K, Mukohara Y, Nakamura H (1997) Mechanism of stereospecific conversion of DL-5-substituted hydantoins to the corresponding L-amino acids by Pseudomonas sp. strain NS671. Biosci Biotechnol Biochem 61:185–187

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata KI, Fukuhara N, Shimada M, Makiguchi N, Soda K (1990) Ezymatic production of L-Tryptophan from DL-Serine and indole by a coupled reaction of tryptophan synthase and amino acid racemase. Biotechnol Appl Biochem 12:141–149

    CAS  PubMed  Google Scholar 

  • Iyer PV, Ananthanarayan L (2008) Enzyme stability and stabilization—aqueous and non-aqueous environment. Process Biochem 43:1019–1032

    Article  CAS  Google Scholar 

  • Kaspereit M, Swernath S, Kienle A (2012) Evaluation of competing process concepts for the production of pure enantiomers. Org Process Res Dev 16:353–363

    Article  CAS  Google Scholar 

  • Kim PM, Duan X, Huang AS, Liu CY, Ming G-l, Song H, Snyder SH (2010) Aspartate racemase, generating neuronal D-aspartate, regulates adult neurogenesis. Proc Natl Acad Sci U S A 107:3175–3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kino K, Sato M, Yoneyama M, Kirimura K (2007) Synthesis of DL-tryptophan by modified broad specificity amino acid racemase from Pseudomonas putida IFO 12996. Appl Microbiol Biotechnol 73:1299–1305

    Article  CAS  PubMed  Google Scholar 

  • Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R (2010) D-Amino acids trigger biofilm disassembly. Science 328:627–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korkegian A, Black ME, Baker D, Stoddard BL (2005) Computational thermostabilization of an enzyme. Science 308:857–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann M, Pasamontes L, Lassen SF, Wyss M (2000) The consensus concept for thermostability engineering of proteins. Biochim Biophys Acta 1543:408–415

    Article  CAS  PubMed  Google Scholar 

  • Lundqvist T, Fisher SL, Kern G, Folmer RH, Xue Y, Newton DT, Keating TA, Alm RA, de Jonge BL (2007) Exploitation of structural and regulatory diversity in glutamate racemases. Nature 447:817–822

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Rodriguez S, Javier Las Heras-Vazquez F, María Clemente-Jimenez J, Mingorance-Cazorla L, Rodriguez-Vico F (2002) Complete conversion of D, L-5-monosubstituted hydantoins with a low velocity of chemical racemization into D-amino acids using whole cells of recombinant Escherichia coli. Biotechnol Prog 18:1201–1206

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Rodriguez S, Gonzalez-Ramirez LA, Clemente-Jimenez JM, Rodriguez-Vico F, Las Heras-Vazquez FJ, Gavira JA, Garcia-Ruiz JM (2008) Crystallization and preliminary crystallographic studies of an active-site mutant hydantoin racemase from Sinorhizobium meliloti CECT4114 Acta Crystallogr. F-Struct. Biol Cryst Commun 64:50–53

    Article  CAS  Google Scholar 

  • Matsui D, Oikawa T, Arakawa N, Osumi S, Lausberg F, Stäbler N, Freudl R, Eggeling L (2009) A periplasmic, pyridoxal-5′-phosphate-dependent amino acid racemase in Pseudomonas taetrolens. Appl Microbiol Biotechnol 83:1045–1054

    Article  CAS  PubMed  Google Scholar 

  • May O, Verseck S, Bommarius A, Drauz K (2002) Development of dynamic kinetic resolution processes for biocatalytic production of natural and nonnatural L-amino acids. Org Process Res Dev 6:452–457

    Article  CAS  Google Scholar 

  • May M, Mehboob S, Mulhearn DC, Wang Z, Yu H, Thatcher GR, Santarsiero BD, Johnson ME, Mesecar AD (2007) Structural and functional analysis of two glutamate racemase isozymes from Bacillus anthracis and implications for inhibitor design. J Mol Biol 371:1219–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muramatsu H, Mihara H, Yasuda M, Ueda M, Kurihara T, Esaki N (2006) Enzymatic synthesis of L-pipecolic acid by Δ1-piperideine-2-carboxylate reductase from Pseudomonas putida. Biosci Biotechnol Biochem 70:2296–2298

    Article  CAS  PubMed  Google Scholar 

  • Mustafa AK, Kumar M, Selvakumar B, Ho GP, Ehmsen JT, Barrow RK, Amzel LM, Snyder SH (2007) Nitric oxide S-nitrosylates serine racemase, mediating feedback inhibition of D-Serine formation. Proc Natl Acad Sci U S A 104:2950–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagata Y, Horiike K, Maeda T (1994) Distribution of free D-serine in vertebrate brains. Brain Res 634:291–295

    Article  CAS  PubMed  Google Scholar 

  • Nara TY, Togashi H, Sekikawa C, Inoh K, Hisamatsu K, Sakaguchi K, Mizukami F, Tsunoda T (2010) Functional immobilization of racemase by adsorption on folded-sheet mesoporous silica. J Mol Catal B Enzym 64:107–112

    Article  CAS  Google Scholar 

  • Nestl BM, Glueck SM, Hall M, Kroutil W, Stuermer R, Hauer B, Faber K (2006) Biocatalytic racemization of (hetero)aryl-aliphatic α-hydroxycarboxylic acids by Lactobacillus spp. Proceeds via an Oxidation–Reduction Sequence. Eur J Org Chem 2006:4573–4577

    Article  Google Scholar 

  • Oikawa T, Watanabe M, Makiura H, Kusakabe H, Yamade K, Soda K (1999) Production of D-glutamate from L-glutamate with glutamate racemase and L-glutamate oxidase. Biosci Biotechnol Biochem 63:2168–2173

    Article  CAS  PubMed  Google Scholar 

  • Okazaki S, Suzuki A, Mizushima T, Kawano T, Komeda H, Asano Y, Yamane T (2009) The novel structure of a pyridoxal 5′-phosphate-dependent fold-type I racemase, α-amino-ε-caprolactam racemase from Achromobacter obae. Biochemistry 48:941–950

    Article  CAS  PubMed  Google Scholar 

  • Okubo Y, Yokoigawa K, Esaki N, Soda K, Misono H (2000) High catalytic activity of alanine racemase from psychrophilic Bacillus psychrosaccharolyticus at high temperatures in the presence of pyridoxal 5′-phosphate FEMS. Microbiol Lett 192:169–173

  • Okumura I, Yamamoto T (1978) Enzymic racemization of allantoin. J Biochem 84:891–895

    CAS  PubMed  Google Scholar 

  • Pellissier H (2003) Dynamic kinetic resolution. Tetrahedron 59:8291–8327

    Article  CAS  Google Scholar 

  • Pellissier H (2008) Recent developments in dynamic kinetic resolution. Tetrahedron 64:1563–1601

    Article  CAS  Google Scholar 

  • Pope SD, Chen L-L, Stewart V (2009) Purine utilization by Klebsiella oxytoca M5al: genes for ring-oxidizing and -opening enzymes. J Bacteriol 191:1006–1017

    Article  CAS  PubMed  Google Scholar 

  • Porter JL, Rusli RA, Ollis DL (2016) Directed evolution of enzymes for industrial biocatalysis. Chembiochem 17:197–203

    Article  CAS  PubMed  Google Scholar 

  • Pozo-Dengra J, Isabel Martinez-Gomez A, Martinez-Rodriguez S, Maria Clemente-Jimenez J, Rodriguez-Vico F, Las Heras-Vazquez FJ (2009) Racemization study on different N-acetylamino acids by a recombinant N-succinylamino acid racemase from Geobacillus kaustophilus CECT4264. Process Biochem 44:835–841

    Article  CAS  Google Scholar 

  • Radkov AD, Moe LA (2014) Bacterial synthesis of D-amino acids. Appl Microbiol Biotechnol 98:5363–5374

    Article  CAS  PubMed  Google Scholar 

  • Reetz MT, DCarballeira J, Vogel A (2006) Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew Chem Int Ed 45:7745–7751

    Article  CAS  Google Scholar 

  • Rubinstein A, Major DT (2009) Catalyzing racemizations in the absence of a cofactor: the reaction mechanism in proline racemase. J Am Chem Soc 131:8513–8521

    Article  CAS  PubMed  Google Scholar 

  • Schell MJ, Cooper OB, Snyder SH (1997) D-aspartate localizations imply neuronal and neuroendocrine roles. Proc Natl Acad Sci U S A 94:2013–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz W, Fingerhut R, Conzelmann E (1994) Purification and properties of an α-methylacyl-CoA racemase from rat liver. Eur J Biochem 222:313–323

    Article  CAS  PubMed  Google Scholar 

  • Schmitz W, Albers C, Fingerhut R, Conzelmann E (1995) Purification and characterization of an α-methylacyl-CoA racemase from human liver. Eur J Biochem 231:815–822

    Article  CAS  PubMed  Google Scholar 

  • Schnell B, Faber K, Kroutil W (2003) Enzymatic racemisation and its application to synthetic biotransformations. Adv Synth Catal 345:653–666

    Article  CAS  Google Scholar 

  • Sheldon RA (1996) Chirotechnology: designing economic chiral syntheses. J Chem Technol Biotechnol 67:1–14

    Article  CAS  Google Scholar 

  • Smith MA, Mack V, Ebneth A, Moraes I, Felicetti B, Wood M, Schonfeld D, Mather O, Cesura A, Barker J (2010) The structure of mammalian serine racemase. J Biol Chem 285:12873–12881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soda K, Tanaka H, Tanizawa K (1988) Thermostable alanine racemase and its application to D-Amino acid synthesis. In: Blanch HW, Klibanov AM editors. pp 375-382. Ann NY Acad Sci

  • Sonke T, Kaptein B (2012) Hydrolysis of Amides Enzyme Catalysis in Organic Synthesis. Wiley-VCH Verlag GmbH & Co. KGaA, pp 561–650. doi:10.1002/9783527639861.ch15

  • Stecher H, Felfer U, Faber K (1997) Large-scale production of Mandelate racemase by Pseudomonas putida ATCC 12633: optimization of enzyme induction and development of a stable crude enzyme preparation. J Biotechnol 56:33–40

    Article  CAS  Google Scholar 

  • Suzuki S, Onishi N, Yokozeki K (2005) Purification and characterization of hydantoin racemase from Microbacterium liquefaciens AJ 3912. Biosci Biotechnol Biochem 69:530–536

    Article  CAS  PubMed  Google Scholar 

  • Tani Y, Miyake R, Yukami R, Dekishima Y, China H, Saito S, Kawabata H, Mihara H (2015) Functional expression of L-lysine α-oxidase from Scomber japonicus in Escherichia coli for one-pot synthesis of L-pipecolic acid from DL-lysine. Appl Microbiol Biotechnol 99:5045–5054

  • Tokuyama S, Hatano K, Takahashi T (1994) Discovery of a novel enzyme, N-acylamino acid racemase in an actinomycete: screening, isolation, and identification. Biosci Biotechnol Biochem 58:24–27

    Article  CAS  PubMed  Google Scholar 

  • Toth K, Richard JP (2007) Covalent catalysis by pyridoxal: evaluation of the effect of the cofactor on the carbon acidity of glycine. J Am Chem Soc 129:3013–3021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vranova V, Zahradnickova H, Janous D, Skene KR, Matharu AS, Rejsek K, Formanek P (2012) The significance of D-amino acids in soil, fate and utilization by microbes and plants: review and identification of knowledge gaps. Plant Soil 354:21–39

    Article  CAS  Google Scholar 

  • Wagner N, Fuereder M, Bosshart A, Panke S, Bechtold M (2011) Practical aspects of integrated operation of biotransformation and SMB separation for fine chemical synthesis. Org Process Res Dev 16:323–330

    Article  Google Scholar 

  • Wagner N, Bosshart A, Failmezger J, Bechtold M, Panke S (2015a) A separation-integrated cascade reaction to overcome thermodynamic limitations in rare-sugar synthesis. Angew Chem Int Ed 127:4256–4260

    Article  Google Scholar 

  • Wagner N, Bosshart A, Wahler S, Failmezger J, Panke S, Bechtold M (2015b) Model-based cost optimization of a reaction-separation integrated process for the enzymatic production of the rare sugar D-psicose at elevated temperatures. Chem Eng Sci 137:423–435

    Article  CAS  Google Scholar 

  • Wiese A, Pietzsch M, Syldatk C, Mattes R, Altenbuchner J (2000) Hydantoin racemase from Arthrobacter aurescens DSM 3747: heterologous expression, purification and characterization. J Biotechnol 80:217–230

    Article  CAS  PubMed  Google Scholar 

  • Willies SC, White JL, Turner NJ (2012) Development of a high-throughput screening method for racemase activity and its application to the identification of alanine racemase variants with activity towards L-arginine. Tetrahedron 68:7564–7567

    Article  CAS  Google Scholar 

  • Wu D, Hu T, Zhang L, Chen J, Du J, Ding J, Jiang H, Shen X (2008) Residues Asp164 and Glu165 at the substrate entryway function potently in substrate orientation of alanine racemase from E. coli: enzymatic characterization with crystal structure analysis. Protein Sci 17:1066–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Würges K, Petruševska-Seebach K, Elsner MP, Lütz S (2009) Enzyme-assisted physicochemical enantioseparation processes—part III: overcoming yield limitations by dynamic kinetic resolution of asparagine via preferential crystallization and enzymatic racemization. Biotechnol Bioeng 104:1235–1239

    Article  PubMed  Google Scholar 

  • Würges K, Mackfeld U, Pohl M, Lütz S, Wilhelm S, Wiechert W, Kubitzki T (2011) An efficient route to both enantiomers of allo-threonine by simultaneous amino acid racemase-catalyzed isomerization of threonine and crystallization. Adv Synth Catal 353(13):2431–2438

    Article  Google Scholar 

  • Yamada H, Shimizu S, Shimada H, Tani Y, Takahashi S, Ohashi T (1980) Production of D-Phenylglycine related amino acids by immobilized microbial cells. Biochimie 62:395–399

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S, Komeda H, Asano Y (2007) New enzymatic method of chiral amino acid synthesis by dynamic kinetic resolution of amino acid amides: use of stereoselective amino acid amidases in the presence of α-amino-epsilon-caprolactam racemase. Appl Environ Microb 73:5370–5373

    Article  CAS  Google Scholar 

  • Yamauchi T, Choi SY, Okada H, Yohda M, Kumagai H, Esaki N, Soda K (1992) Properties of aspartate racemase, a pyridoxal 5′-phosphate-independent amino acid racemase. J Biol Chem 267:18361–18364

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

CF has been financially supported by the EU-funded project INTENANT (contract number 214129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Panke.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Femmer, C., Bechtold, M., Roberts, T.M. et al. Exploiting racemases. Appl Microbiol Biotechnol 100, 7423–7436 (2016). https://doi.org/10.1007/s00253-016-7729-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7729-8

Keywords

Navigation