Skip to main content
Log in

Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Chemical and physical pretreatment of biomass is a critical step in the conversion of lignocellulose to biofuels and bioproducts. Ionic liquid (IL) pretreatment has attracted significant attention due to the unique ability of certain ILs to solubilize some or all components of the plant cell wall. However, these ILs inhibit not only the enzyme activities but also the growth and productivity of microorganisms used in downstream hydrolysis and fermentation processes. While pretreated biomass can be washed to remove residual IL and reduce inhibition, extensive washing is costly and not feasible in large-scale processes. IL-tolerant microorganisms and microbial communities have been discovered from environmental samples and studies begun to elucidate mechanisms of IL tolerance. The discovery of IL tolerance in environmental microbial communities and individual microbes has lead to the proposal of molecular mechanisms of resistance. In this article, we review recent progress on discovering IL-tolerant microorganisms, identifying metabolic pathways and mechanisms of tolerance, and engineering microorganisms for IL tolerance. Research in these areas will yield new approaches to overcome inhibition in lignocellulosic biomass bioconversion processes and increase opportunities for the use of ILs in biomass pretreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allgaier M, Reddy A, Park JI, Ivanova N, D’Haeseleer P, Lowry S, Sapra R, Hazen TC, Simmons BA, VanderGheynst JS, Hugenholtz P (2010) Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community. PLoS One 5(1). doi:10.1371/journal.pone.0008812

  • Alves PC, Hartmann DO, Nunez O, Martins I, Gomes TL, Garcia H, Galceran MT, Hampson R, Becker JD, Pereira CS (2016) Transcriptomic and metabolomic profiling of ionic liquid stimuli unveils enhanced secondary metabolism in Aspergillus nidulans. BMC Genomics 17. doi:10.1186/s12864-016-2577-6

  • Armstrong Z, Mewis K, Strachan C, Hallam SJ (2015) Biocatalysts for biomass deconstruction from environmental genomics. Curr Opin Chem Biol 29:18–25. doi:10.1016/j.cbpa.2015.06.032

    Article  CAS  PubMed  Google Scholar 

  • Bernot RJ, Brueseke MA, Evans-White MA, Lamberti GA (2005) Acute and chronic toxicity of imidazolium-based ionic liquids on Daphnia magna. Environ Toxicol Chem 24(1):87–92. doi:10.1897/03-635.1

    Article  CAS  PubMed  Google Scholar 

  • Blanch HW, Wilke CR (1982) Sugars and chemicals from cellulose. Rev Chem Eng 1:71–119

  • Bochner BR, Savageau MA (1977) Generalized indicator plate for genetic, metabolic, and taxonomic students with microorganisms. Appl Environ Microbiol 33(2):434–444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bochner BR, Gadzinski P, Panomitros E (2001) Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11(7):1246–1255. doi:10.1101/gr.186501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Lee TS, Tullman-Ercek D, Voigt CA, Simmons BA, Keasling JD (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci U S A 108(50):19949–19954. doi:10.1073/pnas.1106958108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borglin S, Joyner D, DeAngelis KM, Khudyakov J, D’Haeseleer P, Joachimiak MP, Hazen T (2012) Application of phenotypic microarrays to environmental microbiology. Curr Opin Biotechnol 23(1):41–48. doi:10.1016/j.copbio.2011.12.006

    Article  CAS  PubMed  Google Scholar 

  • Boyarskiy S, Tullman-Ercek D (2015) Getting pumped: membrane efflux transporters for enhanced biomolecule production. Curr Opin Chem Biol 28:15–19. doi:10.1016/j.cbpa.2015.05.019

    Article  CAS  PubMed  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (eds) (2015) Biochemistry and molecular biology of plants. John Wiley & Sons.

  • Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? In: Olsson L (ed) Biofuels, pp 67–93.  Springer Berlin Heidelberg.

  • Chang VS, Burr B, Holtzapple MT (1997) Lime pretreatment of switchgrass. Appl Biochem Biotechnol 63-5:3–19. doi:10.1007/bf02920408

    Article  Google Scholar 

  • Cheng G, Varanasi P, Li CL, Liu HB, Menichenko YB, Simmons BA, Kent MS, Singh S (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 12(4):933–941. doi:10.1021/bm101240z

    Article  CAS  PubMed  Google Scholar 

  • da Costa Lopes AM, João KG, Morais ARC, Bogel-Łukasik E, Bogel-Łukasik R (2013) Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustain Chem Process 1(1):1. doi:10.1186/2043-7129-1-3

    Article  CAS  Google Scholar 

  • da Costa MS, Santos H, Galinski EA (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. In Biotechnology of Extremophiles. Springer Berlin Heidelberg, pp 117–153

  • Dadi AP, Varanasi S, Schall CA (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 95(5):904–910. doi:10.1002/bit.21047

    Article  CAS  PubMed  Google Scholar 

  • Dadi AP, Schall CA, Varanasi S (2007) Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl Biochem Biotechnol 137:407–421. doi:10.1007/s12010-007-9068-9

    PubMed  Google Scholar 

  • Datta S, Holmes B, Park JI, Chen ZW, Dibble DC, Hadi M, Blanch HW, Simmons BA, Sapra R (2010) Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis. Green Chem 12(2):338–345. doi:10.1039/b916564a

    Article  CAS  Google Scholar 

  • Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72(2):317–364. doi:10.1128/mmbr.00031-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davin-Regli A, Bolla JM, James CE, Lavigne JP, Chevalier J, Garnotel E, Molitor A, Pages JM (2008) Membrane permeability and regulation of drug “influx and efflux” in enterobacterial pathogens. Curr Drug Targets 9(9):750–759. doi:10.2174/138945008785747824

    Article  CAS  PubMed  Google Scholar 

  • DeAngelis KM, Gladden JM, Allgaier M, D’Haeseleer P, Fortney JL, Reddy A, Hugenholtz P, Singer SW, Vander Gheynst JS, Silver WL, Simmons BA, Hazen TC (2010) Strategies for enhancing the effectiveness of metagenomic-based enzyme discovery in lignocellulolytic microbial communities. Bioenergy Res 3(2):146–158. doi:10.1007/s12155-010-9089-z

    Article  Google Scholar 

  • Deive FJ, Rodriguez A, Varela A, Rodrigues C, Leitao MC, Houbraken J, Pereiro AB, Longo MA, Sanroman MA, Samson RA, Rebelo LPN, Pereira CS (2011) Impact of ionic liquids on extreme microbial biotypes from soil. Green Chem 13(3):687–696. doi:10.1039/c0gc00369g

    Article  CAS  Google Scholar 

  • Delcour AH (2009) Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta-Proteins Proteomics 1794(5):808–816. doi:10.1016/j.bbapap.2008.11.005

    Article  CAS  Google Scholar 

  • Dickinson Q, Bottoms S, Hinchman L, McIlwain S, Li S, Myers CL, Boone C, Coon JJ, Hebert A, Sato TK, Landick R, Piotrowski JS (2016) Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain. Microb Cell Factories 15. doi:10.1186/s12934-016-0417-7

  • Docherty KM, Kulpa CF (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7(4):185–189. doi:10.1039/b419172b

    Article  CAS  Google Scholar 

  • Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, Hadi MZ, Mukhopadhyay A (2011) Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 7. doi:10.1038/msb.2011.21

  • Egorova KS, Ananikov VP (2014) Toxicity of ionic liquids: eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization. ChemSusChem 7(2):336–360. doi:10.1002/cssc.201300459

    Article  CAS  PubMed  Google Scholar 

  • Empadinhas N, da Costa MS (2008) Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int Microbiol 11(3):151–161. doi:10.2436/20.1501.01.55

    CAS  PubMed  Google Scholar 

  • Erez O, Kahana C (2002) Deletions of SKY1 or PTK2 in the Saccharomyces cerevisiae trk1 Delta trk2 Delta mutant cells exert dual effect on ion homeostasis. Biochem Biophys Res Commun 295(5):1142–1149. doi:10.1016/s0006-291x(02)00823-9

    Article  CAS  PubMed  Google Scholar 

  • Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9(1):63–69. doi:10.1039/b607614a

    Article  CAS  Google Scholar 

  • Frederix M, Hutter K, Leu J, Batth TS, Turner WJ, Ruegg TL, Blanch HW, Simmons BA, Adams PD, Keasling JD, Thelen MP, Dunlop MJ, Petzold CJ, Mukhopadhyay A (2014) Development of a native Escherichia coli induction system for ionic liquid tolerance. PLoS One 9(7). doi:10.1371/journal.pone.0101115

  • Frederix M, Mingardon F, Hu M, Sun N, Pray T, Singh S, Simmons BA, Keasling JD, Mukhopadhyay A (2016) Development of an E. coli strain for one-pot biofuel production from ionic liquid pretreated cellulose and switchgrass. Green Chem. doi:10.1039/C6GC00642F

    Google Scholar 

  • Freemantle M (1998) Designer solvents—ionic liquids may boost clean technology development. Chem Eng News 76(13):32–37. doi:10.1021/cen-v076n013.p032

    Article  Google Scholar 

  • Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. In: Olsson L (ed) Biofuels. Springer Berlin Heidelberg, pp 41–65

  • Gallezot P (2008) Catalytic conversion of biomass: challenges and issues. ChemSusChem 1(8–9):734–737. doi:10.1002/cssc.200800091

    Article  CAS  PubMed  Google Scholar 

  • Ganske F, Bornscheuer UT (2006) Growth of Escherichia coli, Pichia pastoris and Bacillus cereus in the presence of the ionic liquids BMIM BF4 and BMIM PF6 and organic solvents. Biotechnol Lett 28(7):465–469. doi:10.1007/s10529-006-0006-7

    Article  CAS  PubMed  Google Scholar 

  • George A, Brandt A, Tran K, Zahari SMSNS, Klein-Marcuschamer D, Sun N, Sathitsuksanoh N, Shi J, Stavila V, Parthasarathi R (2015) Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem 17(3):1728–1734

    Article  CAS  Google Scholar 

  • Gomez LD, Steele-King CG, McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytol 178(3):473–485. doi:10.1111/j.1469-8137.2008.02422.x

    Article  CAS  PubMed  Google Scholar 

  • Grkovic S, Brown MH, Skurray RA (2001) Transcription regulation of multidrug efflux pumps in bacteria. Semin Cell Dev Biol 12(3):225–237. doi:10.1006/scdb.2000.0248

    Article  CAS  PubMed  Google Scholar 

  • Grous WR, Converse AO, Grethlein HE (1986) Effect of steam explosion pretreatment on pore-size and enzymatic-hydrolysis of poplar. Enzym Microb Technol 8(5):274–280. doi:10.1016/0141-0229(86)90021-9

    Article  CAS  Google Scholar 

  • Harrison ME, Dunlop MJ (2012) Synthetic feedback loop model for increasing microbial biofuel production using a biosensor. Front Microbiol 3. doi:10.3389/fmicb.2012.00360

  • Hartmann DO, Pereira CS (2013) A molecular analysis of the toxicity of alkyltributylphosphonium chlorides in Aspergillus nidulans. New J Chem 37(5):1569–1577. doi:10.1039/c3nj00167a

    Article  CAS  Google Scholar 

  • Holtz WJ, Keasling JD (2010) Engineering static and dynamic control of synthetic pathways. Cell 140(1):19–23. doi:10.1016/j.cell.2009.12.029

    Article  CAS  PubMed  Google Scholar 

  • Hoover AN, Tumuluru JS, Teymouri F, Moore J, Gresham G (2014) Effect of pelleting process variables on physical properties and sugar yields of ammonia fiber expansion pretreated corn stover. Bioresour Technol 164:128–135. doi:10.1016/j.biortech.2014.02.005

    Article  CAS  PubMed  Google Scholar 

  • Jimenez DJ, Dini-Andreote F, van Elsas JD (2014) Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia. Biotechnol Biofuels 7. doi:10.1186/1754-6834-7-92

  • Jing CQ, Mu LM, Ren TF, Li BN, Chen SJ, Nan WB (2014) Effect of 1-octyl-3-methylimidazolium chloride on cell replication and membrane permeability of Escherichia coli DH5 alpha. Bull Environ Contam Toxicol 93(1):60–63. doi:10.1007/s00128-014-1269-7

    Article  CAS  PubMed  Google Scholar 

  • Jones CM, Lozada NJH, Pfleger BF (2015) Efflux systems in bacteria and their metabolic engineering applications. Appl Microbiol Biotechnol 99(22):9381–9393. doi:10.1007/s00253-015-6963-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaar WE, Gutierrez CV, Kinoshita CM (1998) Steam explosion of sugarcane bagasse as a pretreatment for conversion to ethanol. Biomass Bioenergy 14(3):277–287. doi:10.1016/s0961-9534(97)10038-1

    Article  CAS  Google Scholar 

  • Kaar JL, Jesionowski AM, Berberich JA, Moulton R, Russell AJ (2003) Impact of ionic liquid physical properties on lipase activity and stability. J Am Chem Soc 125(14):4125–4131. doi:10.1021/ja028557x

    Article  CAS  PubMed  Google Scholar 

  • Khudyakov JI, D’Haeseleer P, Borglin SE, DeAngelis KM, Woo H, Lindquist EA, Hazen TC, Simmons BA, Thelen MP (2012) Global transcriptome response to ionic liquid by a tropical rain forest soil bacterium, Enterobacter lignolyticus. Proc Natl Acad Sci U S A 109(32):E2173–E2182. doi:10.1073/pnas.1112750109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilpelainen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of wood in ionic liquids. J Agric Food Chem 55(22):9142–9148. doi:10.1021/jf071692e

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Holtzapple MT (2005) Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour Technol 96(18):1994–2006. doi:10.1016/j.biortech.2005.01.014

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48. doi:10.1016/j.biortech.2015.08.085

    Article  CAS  PubMed  Google Scholar 

  • Klein-Marcuschamer D, Simmons BA, Blanch HW (2011) Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels Bioprod Bioref-Biofpr 5(5):562–569. doi:10.1002/bbb.303

    Article  CAS  Google Scholar 

  • Kumar R, Mago G, Balan V, Wyman CE (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 100(17):3948–3962. doi:10.1016/j.biortech.2009.01.075

    Article  CAS  PubMed  Google Scholar 

  • Lau MW, Dale BE, Balan V (2008) Ethanolic fermentation of hydrolysates from ammonia fiber expansion (AFEX) treated corn stover and distillers grain without detoxification and external nutrient supplementation. Biotechnol Bioeng 99(3):529–539. doi:10.1002/bit.21609

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Lee SB (2005) The Hildebrand solubility parameters, cohesive energy densities and internal energies of 1-alkyl-3-methylimidazolium-based room temperature ionic liquids. Chem Commun (27):3469–3471 doi:10.1039/b503740a

  • Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102(5):1368–1376. doi:10.1002/bit.22179

    Article  CAS  PubMed  Google Scholar 

  • Li CZ, Wang Q, Zhao ZK (2008) Acid in ionic liquid: an efficient system for hydrolysis of lignocellulose. Green Chem 10(2):177–182. doi:10.1039/b711512a

    Article  CAS  Google Scholar 

  • Li Q, He YC, Xian M, Jun G, Xu X, Yang JM, Li LZ (2009) Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour Technol 100(14):3570–3575. doi:10.1016/j.biortech.2009.02.040

    Article  CAS  PubMed  Google Scholar 

  • Li CL, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101(13):4900–4906. doi:10.1016/j.biortech.2009.10.066

    Article  CAS  PubMed  Google Scholar 

  • Liu LY, Chen HZ (2006) Enzymatic hydrolysis of cellulose materials treated with ionic liquid BMIM Cl. Chin Sci Bull 51(20):2432–2436. doi:10.1007/s11434-006-2134-9

    Article  CAS  Google Scholar 

  • Liu CG, Wyman CE (2004) Impact of fluid velocity on hot water only pretreatment of corn stover in a flowthrough reactor. Appl Biochem Biotechnol 113:977–987

    Article  PubMed  Google Scholar 

  • Liu LP, Hu Y, Wen P, Li N, Zong MH, Ou-Yang BN, Wu H (2015) Evaluating the effects of biocompatible cholinium ionic liquids on microbial lipid production by Trichosporon fermentans. Biotechnol Biofuels 8. doi:10.1186/s13068-015-0299-7

  • Lloyd TA, Wyman CE (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 96(18):1967–1977. doi:10.1016/j.biortech.2005.01.011

    Article  CAS  PubMed  Google Scholar 

  • Lozano P, de Diego T, Guegan JP, Vaultier M, Iborra JL (2001) Stabilization of alpha-chymotrypsin by ionic liquids in transesterification reactions. Biotechnol Bioeng 75(5):563–569. doi:10.1002/bit.10089

    Article  CAS  PubMed  Google Scholar 

  • Martins I, Hartmann DO, Alves PC, Planchon S, Renaut J, Leitao MC, Rebelo LPN, Pereira CS (2013) Proteomic alterations induced by ionic liquids in Aspergillus nidulans and Neurospora crassa. J Proteome 94:262–278. doi:10.1016/j.jprot.2013.09.015

    Article  CAS  Google Scholar 

  • Matsumoto M, Mochiduki K, Kondo K (2004) Toxicity of ionic liquids and organic solvents to lactic acid-producing bacteria. J Biosci Bioeng 98(5):344–347. doi:10.1263/jbb.98.344

    Article  CAS  PubMed  Google Scholar 

  • Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. In: Olsson L (ed) Biofuels. Springer Berlin Heidelberg, pp 95–120

  • Mora-Pale M, Meli L, Doherty TV, Linhardt RJ, Dordick JS (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng 108(6):1229–1245. doi:10.1002/bit.23108

    Article  CAS  PubMed  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686. doi:10.1016/j.biortech.2004.06.025

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay A (2015) Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends Microbiol 23(8):498–508. doi:10.1016/j.tim.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  • Murnen HK, Balan V, Chundawat SPS, Bals B, Sousa LD, Dale BE (2007) Optimization of ammonia fiber expansion (AFEX) pretreatment and enzymatic hydrolysis of Miscanthus x giganteus to fermentable sugars. Biotechnol Prog 23(4):846–850. doi:10.1021/bp070098m

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Yamaguchi K, Taniguchi N, Arai S, Yamada R, Katahira S, Ishida N, Takahashi H, Ogino C, Kondo A (2011) Direct bioethanol production from cellulose by the combination of cellulase-displaying yeast and ionic liquid pretreatment. Green Chem 13(10):2948–2953. doi:10.1039/c1gc15688h

    Article  CAS  Google Scholar 

  • Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12(4):307–331. doi:10.1016/j.ymben.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  • Nikaido H, Takatsuka Y (2009) Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta-Proteins Proteomics 1794(5):769–781. doi:10.1016/j.bbapap.2008.10.004

    Article  CAS  Google Scholar 

  • Ouellet M, Datta S, Dibble DC, Tamrakar PR, Benke PI, Li CL, Singh S, Sale KL, Adams PD, Keasling JD, Simmons BA, Holmes BM, Mukhopadhyay A (2011) Impact of ionic liquid pretreated plant biomass on Saccharomyces cerevisiae growth and biofuel production. Green Chem 13(10):2743–2749. doi:10.1039/c1gc15327g

    Article  CAS  Google Scholar 

  • Pace S, Ceballos SJ, Harrold D, Stannard W, Simmons B, Singer SW, Thelen MP, VanderGheynst JS (2016) Enrichment of microbial communities tolerant to the ionic liquids tetrabutylphosphonium chloride and tributylethylphosphonium diethylphosphate. Appl Microbiol Biotechnol:1–14. doi:10.1007/s00253-016-7525-5

  • Pages JM, James CE, Winterhalter M (2008) The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol 6(12):893–903. doi:10.1038/nrmicro1994

    Article  CAS  PubMed  Google Scholar 

  • Pernak J, Rogoza J, Mirska I (2001) Synthesis and antimicrobial activities of new pyridinium and benzimidazolium chlorides. Eur J Med Chem 36(4):313–320. doi:10.1016/s0223-5234(01)01226-0

    Article  CAS  PubMed  Google Scholar 

  • Pernak J, Sobaszkiewicz K, Mirska I (2003) Anti-microbial activities of ionic liquids. Green Chem 5(1):52–56. doi:10.1039/b207543c

    Article  CAS  Google Scholar 

  • Petkovic M, Ferguson J, Bohn A, Trindade J, Martins I, Carvalho MB, Leitao MC, Rodrigues C, Garcia H, Ferreira R, Seddon KR, Rebelo LPN, Pereira CS (2009) Exploring fungal activity in the presence of ionic liquids. Green Chem 11(6):889–894. doi:10.1039/b823225c

    Article  CAS  Google Scholar 

  • Petkovic M, Ferguson JL, Gunaratne HQN, Ferreira R, Leitao MC, Seddon KR, Rebelo LPN, Pereira CS (2010) Novel biocompatible cholinium-based ionic liquids-toxicity and biodegradability. Green Chem 12(4):643–649. doi:10.1039/b922247b

    Article  CAS  Google Scholar 

  • Pfruender H, Jones R, Weuster-Botz D (2006) Water immiscible ionic liquids as solvents for whole cell biocatalysis. J Biotechnol 124(1):182–190. doi:10.1016/j.jbiotec.2005.12.004

    Article  CAS  PubMed  Google Scholar 

  • Pham TPT, Cho CW, Yun YS (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44(2):352–372. doi:10.1016/j.watres.2009.09.030

    Article  CAS  PubMed  Google Scholar 

  • Portillo MD, Saadeddin A (2015) Recent trends in ionic liquid (IL) tolerant enzymes and microorganisms for biomass conversion. Crit Rev Biotechnol 35(3):294–301. doi:10.3109/07388551.2013.843069

    Article  CAS  Google Scholar 

  • Putman M, van Veen HW, Konings WN (2000) Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64(4):672. doi:10.1128/mmbr.64.4.672-693.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quijano G, Couvert A, Amrane A (2010) Ionic liquids: applications and future trends in bioreactor technology. Bioresour Technol 101(23):8923–8930. doi:10.1016/j.biortech.2010.06.161

    Article  CAS  PubMed  Google Scholar 

  • Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768. doi:10.1146/annurev.micro.56.012302.161038

    Article  CAS  PubMed  Google Scholar 

  • Reddy AP, Simmons CW, Claypool J, Jabusch L, Burd H, Hadi MZ, Simmons BA, Singer SW, VanderGheynst JS (2012) Thermophilic enrichment of microbial communities in the presence of the ionic liquid 1-ethyl-3-methylimidazolium acetate. J Appl Microbiol 113(6):1362–1370. doi:10.1111/jam.12002

    Article  CAS  PubMed  Google Scholar 

  • Reddy AP, Simmons CW, D’Haeseleer P, Khudyakov J, Burd H, Hadi M, Simmons BA, Singer SW, Thelen MP, VanderGheynst JS (2013) Discovery of microorganisms and enzymes involved in high-solids decomposition of rice straw using metagenomic analyses. PLoS One 8(10):12. doi:10.1371/journal.pone.0077985

    Google Scholar 

  • Romero A, Santos A, Tojo J, Rodriguez A (2008) Toxicity and biodegradability of imidazolium ionic liquids. J Hazard Mater 151(1):268–273. doi:10.1016/j.jhazmat.2007.10.079

    Article  CAS  PubMed  Google Scholar 

  • Ruegg TL, Kim EM, Simmons BA, Keasling JD, Singer SW, Lee TS, Thelen MP (2014) An auto-inducible mechanism for ionic liquid resistance in microbial biofuel production. Nat Commun 5. doi:10.1038/ncomms4490

  • Ruiz HA, Rodriguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sust Energ Rev 21:35–51. doi:10.1016/j.rser.2012.11.069

    Article  CAS  Google Scholar 

  • Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40(12):3693–3700. doi:10.1016/j.procbio.2005.04.006

    Article  CAS  Google Scholar 

  • Santos AG, Ribeiro BD, Alviano DS, Coelho MAZ (2014) Toxicity of ionic liquids toward microorganisms interesting to the food industry. RSC Adv 4(70):37157–37163. doi:10.1039/c4ra05295a

    Article  CAS  Google Scholar 

  • Schell DJ, Farmer J, Newman M, McMillan JD (2003) Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor—investigation of yields, kinetics, and enzymatic digestibilities of solids. Appl Biochem Biotechnol 105:69–85. doi:10.1385/abab:105:1-3:69

    Article  PubMed  Google Scholar 

  • Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794. doi:10.1177/004051755902901003

    Article  CAS  Google Scholar 

  • Sendovski M, Nir N, Fishman A (2010) Bioproduction of 2-phenylethanol in a biphasic ionic liquid aqueous system. J Agric Food Chem 58(4):2260–2265. doi:10.1021/jf903879x

    Article  CAS  PubMed  Google Scholar 

  • Silveira MHL, Morais ARC, da Costa Lopes AM, Olekszyszen DN, Bogel-Łukasik R, Andreaus J, Pereira Ramos L (2015) Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. ChemSusChem 8(20):3366–3390. doi:10.1002/cssc.201500282

    Article  CAS  PubMed  Google Scholar 

  • Simmons BA, Loque D, Blanch HW (2008) Next-generation biomass feedstocks for biofuel production. Genome Biol 9(12):1

  • Simmons CW, Reddy AP, VanderGheynst JS, Simmons BA, Singer SW (2014) Bacillus coagulans tolerance to 1-ethyl-3-methylimidazolium-based ionic liquids in aqueous and solid-state thermophilic culture. Biotechnol Prog 30(2):311–316. doi:10.1002/btpr.1859

    Article  CAS  PubMed  Google Scholar 

  • Singer SW, Reddy AP, Gladden JM, Guo H, Hazen TC, Simmons BA, VanderGheynst JS (2011) Enrichment, isolation and characterization of fungi tolerant to 1-ethyl-3-methylimidazolium acetate. J Appl Microbiol 110(4):1023–1031. doi:10.1111/j.1365-2672.2011.04959.x

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Simmons BA, Vogel KP (2009) Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol Bioeng 104(1):68–75. doi:10.1002/bit.22386

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Suhag M, Dhaka A (2015) Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydr Polym 117:624–631. doi:10.1016/j.carbpol.2014.10.012

    Article  CAS  PubMed  Google Scholar 

  • Sitepu IR, Shi S, Simmons BA, Singer SW, Boundy-Mills K, Simmons CW (2014) Yeast tolerance to the ionic liquid 1-ethyl-3-methylimidazolium acetate. FEMS Yeast Res 14(8):1286–1294. doi:10.1111/1567-1364.12224

    Article  CAS  PubMed  Google Scholar 

  • Sun N, Rahman M, Qin Y, Maxim ML, Rodriguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11(5):646–655. doi:10.1039/b822702k

    Article  CAS  Google Scholar 

  • Tan SSY, MacFarlane DR, Upfal J, Edye LA, Doherty WOS, Patti AF, Pringle JM, Scott JL (2009) Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem 11(3):339–345. doi:10.1039/b815310h

    Article  CAS  Google Scholar 

  • Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Stahl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12(6):563–576. doi:10.1007/s10570-005-9001-8

    Article  CAS  Google Scholar 

  • Trinh LTP, Lee YJ, Lee J-W, Lee H-J (2015) Characterization of ionic liquid pretreatment and the bioconversion of pretreated mixed softwood biomass. Biomass Bioenergy 81:1–8. doi:10.1016/j.biombioe.2015.05.005

    Article  CAS  Google Scholar 

  • Vaas LAI, Sikorski J, Michael V, Goker M, Klenk HP (2012) Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS One 7(4). doi:10.1371/journal.pone.0034846

  • van Rantwijk F, Lau RM, Sheldon RA (2003) Biocatalytic transformations in ionic liquids. Trends Biotechnol 21(3):131–138. doi:10.1016/s0167-7799(03)00008-8

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Pan WB (2005) Ionic liquids: green solvents for nonaqueous biocatalysis. Enzym Microb Technol 37(1):19–28. doi:10.1016/j.enzmictec.2005.02.014

    Article  CAS  Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefining-Biofpr 2(1):26–40. doi:10.1002/bbb.49

    Article  CAS  Google Scholar 

  • Yu CW, Reddy AP, Simmons CW, Simmons BA, Singer SW, VanderGheynst JS (2015) Preservation of microbial communities enriched on lignocellulose under thermophilic and high-solid conditions. Biotechnol Biofuels 8. doi:10.1186/s13068-015-0392-y

  • Zakrzewska ME, Bogel-Lukasik E, Bogel-Lukasik R (2010) Solubility of carbohydrates in ionic liquids. Energy Fuel 24:737–745. doi:10.1021/ef901215m

    Article  CAS  Google Scholar 

  • Zavrel M, Bross D, Funke M, Buchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100(9):2580–2587. doi:10.1016/j.biortech.2008.11.052

    Article  CAS  PubMed  Google Scholar 

  • Zhang YHP, Ding SY, Mielenz JR, Cui JB, Elander RT, Laser M, Himmel ME, McMillan JR, Lynd LR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97(2):214–223. doi:10.1002/bit.21386

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199:21–33. doi:10.1016/j.biortech.2015.08.102

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Jones CIL, Baker GA, Xia S, Olubajo O, Person VN (2009a) Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J Biotechnol 139(1):47–54. doi:10.1016/j.jbiotec.2008.08.009

    Article  CAS  PubMed  Google Scholar 

  • Zhao XB, Cheng KK, Liu DH (2009b) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82(5):815–827. doi:10.1007/s00253-009-1883-1

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean S. VanderGheynst.

Ethics declarations

Funding

This work was supported by National Institute of Food and Agriculture project CA-D-BAE-2228-RR, the UC Lab Fees Research Program under project no. 237496, and completed as part of the Joint BioEnergy Institute, supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Chaowei Yu has passed away last November 1, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Simmons, B.A., Singer, S.W. et al. Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts. Appl Microbiol Biotechnol 100, 10237–10249 (2016). https://doi.org/10.1007/s00253-016-7955-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7955-0

Keywords

Navigation