Skip to main content

Advertisement

Log in

Current status in biotechnological production and applications of glycolipid biosurfactants

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biosurfactants are natural compounds with surface activity and emulsifying properties produced by several types of microorganisms and have been considered an interesting alternative to synthetic surfactants. Glycolipids are promising biosurfactants, due to low toxicity, biodegradability, and chemical stability in different conditions and also because they have many biological activities, allowing wide applications in different fields. In this review, we addressed general information about families of glycolipids, rhamnolipids, sophorolipids, mannosylerythritol lipids, and trehalose lipids, describing their chemical and surface characteristics, recent studies using alternative substrates, and new strategies to improve of production, beyond their specificities. We focus in providing recent developments and trends in biotechnological process and medical and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336. doi:10.1007/s00253-010-2498-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn C, Morya VK, Kim EK (2016) Tuning surface-active properties of bio-surfactant sophorolipids by varying fatty-acid chain lengths. Korean J Chem Eng 33:2127–2133. doi:10.1007/s11814-016-0082-x

    Article  CAS  Google Scholar 

  • Amani H, Muller MM, Syldatk C, Hausmann R (2013) Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery. Appl Biochem Biotech 170:1080–1093. doi:10.1007/s12010-013-0249-4

    Article  CAS  Google Scholar 

  • Amstrong CD, Venugopal R, Qu Q (2015) Method of using sophorolipids in well treatment operations. USA US2015300139 A1

  • Anderson RJ, Newman MS (1933) The chemistry of the lipids of tubercle bacilli: XXXIII. Isolation of trehalose from the acetone-soluble fat of the human tubercle bacillus. J Biol Chem 101:499–504

    CAS  Google Scholar 

  • Andrä J, Rademann J, Howe J, Koch MHJ, Heine H, Zähringer U, Brandenburg K (2006) Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia (Pseudomonas) plantarii: immune cell stimulation and biophysical characterization. Biol Chem 387:301–310. doi:10.1515/bc.2006.040

    Article  PubMed  CAS  Google Scholar 

  • Andrade CJ, Andrade LM, Bution ML, Dolder MAH, Barrosm FFC, Pastore GM (2016) Optimizing alternative substrate of silmultaneous production of surfactin and 2,3-butanediol by Bacillus subtilis LB5a. Biocatal Agric Biotechnol 6:209–218. doi:10.1016/j.bcab.2016.04.004

    Google Scholar 

  • Arutchelvi JI, Doble M (2011) Mannosylerythritol lipids: microbial production and their applications. In: Soberón-Chávez G (ed) Biosurfactants, microbiology monographs 20. Springer-Verlag, Berlin, Germany, pp. 121–149. doi:10.1007/978-3-642-14490-5_6

    Google Scholar 

  • Arutchelvi JI, Bhaduri S, Uppara PV, Doble M (2008) Mannosylerythritol lipids: a review. J Ind Microbiol Biot 35:1559–1570. doi:10.1007/s10295-008-0460-4

    Article  CAS  Google Scholar 

  • Asmer H-J, Lang S, Wagner F, Wray V (1988) Microbial production, structure elucidation and bioconversion of sophorose lipids. J Am Oil Chem Soc 65:1460–1466. doi:10.1007/bf02898308

    Article  CAS  Google Scholar 

  • Asselineau C, Asselineau J (1978) Trehalose-containing glycolipids. Prog Chem Fats Other Lipids 16:59–99. doi:10.1016/0079-6832(78)90037-x

    Article  CAS  PubMed  Google Scholar 

  • Azuma M, Suzutani T, Sazaki K, Yoshida I, Sakuma T, Yoshida T (1987) Role of interferon in the augmented resistance of trehalose 6,6′-dimycolate-treated mice to influenza vírus infection. J Gen Virol 68:835–843. doi:10.1099/0022-1317-68-3-835

    Article  CAS  PubMed  Google Scholar 

  • Baeva TA, Gein SV, Kuyukina MS, Ivshina IB, Kochina OA, Chereshnev VA (2014) Effect of glycolipid Rhodococcus biosurfactant on secretory activity of neutrophils in vitro. Bul Exp Biol Med 157:238–242. doi:10.1007/s10517-014-2534-9

    Article  CAS  Google Scholar 

  • Bafghi MK, Fazaelipoor MH (2012) Application of rhamnolipid in the formulation of a detergent. J Surfactant Deterg 15:679–684. doi:10.1007/s11743-012-1386-4

    Article  CAS  Google Scholar 

  • Bai L, McClements DJ (2016) Formation and stabilization of nanoemulsions using biosurfactants: rhamnolipids. J Colloid Interface Sci 479:71–79. doi:10.1016/j.jcis.2016.06.047

    Article  CAS  PubMed  Google Scholar 

  • Bajaj A, Mayliraj S, Mudiam MKR, Patel DK, Manickam N (2014) Isolation and functional analysis of a glycolipid producing Rhodococcus sp. strain IITR03 with potential for degradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT). Bioresour Technol 167:398–406. doi:10.1016/j.biortech.2014.06.007

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Díaz De Rienzo MA, Quinn GA (2014a) Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol 98:9915–9929. doi:10.1007/s00253-014-6169-6

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit NV (2014b) Cost effective technologies and renewable substrates for biosurfactants production. Front Microbiol 5:1–18. doi:10.3389/fmicb.2014.00697

    Article  Google Scholar 

  • Barros FFC, Ponezi AN, Pastore GM (2008) Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate. J Ind Microbiol Biotechnol 35:1071–1078. doi:10.1007/s10295-008-0385-y

    Article  CAS  PubMed  Google Scholar 

  • Basak G, Das D, Das N (2014) Dual role of acidic diacetate sophorolipid as biostabilizer for ZnO nanoparticle synthesis and biofunctionalizing agent against Salmonella enterica and Candida albicans. J Microbiol Biotechnol 24:87–96. doi:10.4014/jmb.1307.07081

    Article  CAS  PubMed  Google Scholar 

  • Behrens B, Baune M, Jungkeit J, Tiso T, Blank LM, Hayen H (2016) High performance liquid chromatography-cherged aerosol detection applying an inverse gradient for quantification of rhamnolipid biosurfactants. J Chromatogr A 1455:125–132. doi:10.1016/j.chroma.2016.05.079

    Article  CAS  PubMed  Google Scholar 

  • Benicasa M, Marqués A, Pinazo A, Manresa A (2010) Rhamnolipid surfactants: alternative substrates, new strategies. Adv Exp Med Biol 672:170–184. doi:10.1007/978-1-4419-5979-9_13

    Article  Google Scholar 

  • Bhangale A, Wadekar S, Kale S, Pratap A (2013b) Optimization and monitoring of water soluble substrate for synthesis of mannosylerythritol lipids by Pseudozyma antarctica (ATCC 32657). Biothecnol Bioprocess Eng 18:679–685. doi:10.1007/s12257-012-0647-4

    Article  CAS  Google Scholar 

  • Bhangale A, Wadekar S, Kale S, Bhowmick D, Pratap A (2013a) Production of sophorolipids synthesized on castor oil with glucose and glycerol by using Starmerella bombicola (ATCC 22214). Eur J Lipid Sci Technol 116:336–343. doi:10.1002/ejlt.201300236

    Article  CAS  Google Scholar 

  • Cameotra SS, Bollag JM (2003) Biosurfactant-enhanced bioremediation of polycyclic aromatic hydrocarbons. Crit Rev Envirom Sci Technol 33:111–126. doi:10.1080/10643380390814505

    Article  CAS  Google Scholar 

  • Cameotra SS, Makkar RS (2010) Biosurfactant-enhanced bioremediation of hydrophobic pollutants. Pure Appl Chem 82:97–116. doi:10.1351/pac-con-09-02-10

    Article  CAS  Google Scholar 

  • Cejková J, Ardan T, Cejka C, Luyckx J (2011) Favorable effects of trehalose on the development of UVB-mediated antioxidant/pro-oxidant imbalance in the corneal epithelium, proinflammatory cytokine and matrix metalloproteinase induction, and heat shock protein 70 expression. Graefes Arch Clin Exp Ophthalmol 249:1185–1194. doi:10.1007/s00417-011-1676-y

    Article  PubMed  CAS  Google Scholar 

  • Chayabutra C, Wu J, Ju LK (2001) Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates. Biotechnol Bioeng 72:25–33. doi:10.1002/1097-0290(20010105)72:1%3C25::aid-bit4%3E3.0.co;2-j

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Huang PT, Zhang KY, Ding FR (2012) Isolation of biosurfactant producers, optimization and properties of biosurfactant produced by Acinetobacter sp. from petroleum-contaminated soil. J Appl Microbiol 112:660–671. doi:10.1111/j.1365-2672.2012.05242.x

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Song X, Zhang H, Qu Y, Miao J (2006) Sophorolipid produced from the new yeast strain Wickerhamiella domercqiae induces apoptosis in H7402 human liver cancer cells. Appl Microbiol Biotechnol 72:52–59. doi:10.1007/s00253-005-0243-z

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zhang H, Liu Y, Fu S, Liu X (2014) Metal ions can affect the composition and production of sophorolipids by Wickerhamiella domercqiae Y2A CGMCC3798. Eur J Lipid Sci and Technol 116:1505–1512. doi:10.1002/ejlt.201300512

    Article  CAS  Google Scholar 

  • Christofi N, Ivshina I (2002) Microbial surfactants and their use in field studies of soil remediation. J Appl Microbiol 93:915–929. doi:10.1046/j.1365-2672.2002.01774.x

    Article  CAS  PubMed  Google Scholar 

  • Christova N, Tuleva B, Kril A, Georgieva M, Konstantinov S, Terziyski I, Nikolova B, Stoineva I (2013) Chemical structure and in vitro antitumor activity of rhamnolipids from Pseudomonas aeruginosa BN10. Appl Biochem Biotech 170:676–689. doi:10.1007/s12010-013-0225-z

    Article  CAS  Google Scholar 

  • Clarke KG, Ballot F, Reid SJ (2010) Enhanced rhamnolipid production by Pseudomonas aeruginosa under phosphate limitation. World J Microb Biot 26:2179–2184. doi:10.1007/s11274-010-0402-y

    Article  CAS  Google Scholar 

  • Colak AK, Kahraman H (2013) The use of raw cheese whey and olive oil mill wastewater for rhamnolipid production by recombinant Pseudomonas aeruginosa. Environ Exp Biol 11:125–130

    Google Scholar 

  • Concaix FB (2003) Use of sophorolipids comprising diacetyl lactones as agent for stimulating skin fibroblast metabolism. USA US6596265 B1

  • Čejková A, Schreiberová O, Jezdik R, Chudoba J, Jirku V, Řezanka T, Masak J (2014) Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa as producers of rhamnolipids. J Biotechnol 185:S119–S120. doi:10.1016/j.jbiotec.2014.07.409

    Article  Google Scholar 

  • Daniel H-J, Otto RT, Binder M, Reuss M, Syldatk C (1999) Production of sophorolipids from whey: development of a two-stage process with Cryptococcus curvatus ATCC 20509 and Candida bombicola ATCC 22214 using deprotenized whey concentrates as substrates. Appl Microbiol Biotechnol 51:40–45. doi:10.1007/s002530051360

    Article  CAS  PubMed  Google Scholar 

  • Daniel H-J, Reuss M, Syldatk C (1998) Production of sophorolipids in high concentration from deproneinized whey and rapeseed oil in a two stage fed batch process using Candida bombicola ATCC 22214 and Cryptococcus curvatus ATCC20509. Biotechonol Lett 20:1153–1156. doi:10.1023/A:1005332605003

    Article  CAS  Google Scholar 

  • Daverey A, Pakshirajan K (2009) Production of sophorolipids by the yeast Candida bombicola using simple and low cost fermentative media. Food Res Int 42:499–504. doi:10.1016/j.foodres.2009.01.014

    Article  CAS  Google Scholar 

  • Daverey A, Pakshirajan K (2010) Sophorolipids from Candida bombicola using mixed hydrophilic substrates: production, purification and characterization. Colloids Surf B Biointerfaces 79:246–253. doi:10.1016/j.colsurfb.2010.04.002

    Article  CAS  PubMed  Google Scholar 

  • Davey ME, Caiazza NC, O'Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036. doi:10.1128/jb.185.3.1027-1036.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Araujo LV, Abreu F, Lins U, Santa Anna LMM, Nitschke M, Freire DMG (2011) Rhamnolipid and surfactin inhibit Listeria monocytogenes adhesion. Food Res Int 44:481–488. doi:10.1016/j.foodres.2010.09.002

    Article  CAS  Google Scholar 

  • De Sousa JR, Da Costa Correia JA, De Almeida JGL, Rodrigues S, Pessoa ODL, Medo VMM, Gonçalves LRB (2011) Evaluation of a co-product of biodiesel production as carbon source in the production of biosurfactant by Pseudomonas aeruginosa MSIC02. Process Biochem 46:1831–1839. doi:10.1016/j.procbio.2011.06.016

    Article  CAS  Google Scholar 

  • DeBosch BJ, Heitmeier MR, Mayer AL, Higgins CB, Crowley JR, Kraft TE, Chi M, Newberry EP, Chen Z, Finck BN, Davidson NO, Yarasheski KE, Hruz PW, Moley KH (2016) Trehalose inhibits solute carrier 2A (Slc2A) proteins to induce autophagy and prevent hepatic steatosis. Sci Signal 9:ra21. doi:10.1126/scisignal.aac5472

    Article  PubMed  Google Scholar 

  • Deepika KV, Kalam S, Sridhar PR, Podile AR, Bramhachari PV (2016) Optimization of rhamanolipid biosurfactant production by mangrove sediment bacterium Pseudomonas aeruginosa KVD-HR42 using response surface methodology. Biocatal Agric Biotechnol 5:38–47. doi:10.1016/j.bcab.2015.11.006

    Google Scholar 

  • Deepika KV, Sridhar PR, Bramhachari PV (2015) Characterization and antifungal properties of rhamnolipids produced by mangrove sediment bacterium Pseudomonas aeruginosa strain KVD-HM52. Biocatal Agric Biotechnol 4:608–615. doi:10.1016/j.bcab.2015.09.009

    Google Scholar 

  • Delbeke EI, Roman BI, Marin GB, Van Geem KM, Stevens CV (2015) A new class of antimicrobial biosurfactants: quaternary ammonium sophorolipids. Green Chem 17:3373–3377. doi:10.1039/c5gc00120j

    Article  CAS  Google Scholar 

  • Delbeke EIP, Everaert J, Uitterhaegen E, Verweire S, Verlee A, Talou T, Soetaert W, Van Bogaert INA, Stevens CV (2016a) Petroselinic acid purification and its use for the fermentation of new sophorolipids. AMB Express 6:28. doi:10.1186/s13568-016-0199-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delbeke EIP, Lozach O, Gall TL, Berchel M, Montier T, Jaffrès PA, Van Geem KM, Stevens CV (2016b) Evaluation of the transfection efficacies of quaternary ammonium salts prepared from sophorolipids. Org Biomol Chem 14:3744–3751. doi:10.1039/c6ob00241b

    Article  CAS  PubMed  Google Scholar 

  • Dengle-Pulate V, Bhagwat S, Prabhune A (2013) Microbial oxidation of medium chain fatty alcohol in the synthesis of sophorolipids by Candida bombicola and its physicochemical characterization. J Surfact Deterg 16:173–181. doi:10.1007/s11743-012-1378-4

    Article  CAS  Google Scholar 

  • Dengle-Pulate V, Chandorkar P, Bhagwat S, Prabhune AA (2014) Antimicrobial and SEM studies of sophorolipids synthesized using lauryl alcohol. J Surfactant Deterg 17:543–552. doi:10.1007/s11743-013-1495-8

    Article  CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64. doi:10.1007/s002530051648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Despande M, Daniels L (1995) Evaluation of sophorolipid biosurfactant production by Candida bombicola using animal fat. Bioresour Technol 54:143–150. doi:10.1016/0960-8524(95)00116-6

    Article  Google Scholar 

  • Díaz De Rienzo MA, Martin PJ (2016) Effect of mono- and di-rhamnolipids on biofilms pre-formed by Bacillus subtilis BBK006. Curr Microbiol 73:183–189. doi:10.1007/s00284-016-1046-4

    Article  CAS  Google Scholar 

  • Díaz De Rienzo MA, Banat IM, Dolman B, Winterburn J, Martin PJ (2015) Sophorolipid biosurfactants: possible use as antibacterial and antibiofilm agent. New Biotechnol 32:720–726. doi:10.1016/j.nbt.2015.02.009

    Article  CAS  Google Scholar 

  • Díaz De Rienzo MA, Kamalanathan ID, Martin PJ (2016a) Comparative study of the production of rhamnolipid biosurfactants by B. thailandensis E264 and P. aeruginosa ATCC9027 using foam fractionation. Process Biochem 51:820–827. doi:10.1016/j.procbio.2016.04.007

    Article  CAS  Google Scholar 

  • Díaz De Rienzo MA, Stevenson PS, Marchant R, Banat IM (2016b) Pseudomonas aeruginosa biofilm disruption using microbial surfactants. J Appl Microbiol 120:868–876. doi:10.1111/jam.13049

    Article  PubMed  CAS  Google Scholar 

  • Díaz De Rienzo MA, Stevenson PS, Marchant R, Banat IM (2016c) Effect of biosurfactants on Pseudomonas aeruginosa and Staphylococcus aureus biofilms in a BioFlux channel. Appl Microbiol Biotechnol 120:868–876. doi:10.1007/s00253-016-7310-5

    Google Scholar 

  • Do Valle Gomes MZ, Nitschke M (2012) Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria. Food Control 25:441–447. doi:10.1016/j.foodcont.2011.11.025

    Article  CAS  Google Scholar 

  • Dobler L, Vilela LF, Almeida RV, Neves BC (2016) Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting. New Biotechnol 33:123–135. doi:10.1016/j.nbt.2015.09.005

    Article  CAS  Google Scholar 

  • Dogan I, Pagilla KR, Webster DA, Stark BC (2006) Expression of Vitreoscilla haemoglobin in Gordonia amarae enhances biosurfactant production. J Ind Microbiol Biotechnol 33:693–700. doi:10.1007/s10295-006-0097-0

    Article  CAS  PubMed  Google Scholar 

  • Dubeau D, Deziel E, Woods DE, Lepine F (2009) Burkholderia thailandensis harbors twoidentical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol 9:263. doi:10.1186/1471-2180-9-263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duong T, Barrangou R, Russel WM, Klaenhammer TR (2006) Characterization of the tre locus and analysis of trehalose cryoprotection in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 72:1218–1225. doi:10.1128/aem.72.2.1218-1225.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dusane DH, Nancharaiah YV, Zinjarde SS, Venugopalan VP (2010) Rhamnolipid mediated disruption of marine Bacillus pumilus biofilms. Colloids Surf B Biointerfaces 81:242–248. doi:10.1016/j.colsurfb.2010.07.013

    Article  CAS  PubMed  Google Scholar 

  • Ebadipour N, Lotfabad TB, Yaghmaei S, RoostAazad R (2016) Optimization of low-cost biosurfactant production from agricultural residues through response surface methodology. Prep Biochem Biotechnol 46:30–38. doi:10.1080/10826068.2014.979204

    Article  CAS  PubMed  Google Scholar 

  • El-Housseiny GS, Aboulwafa MM, Aboshanab KA, Hassouna NAH (2016) Optimization of rhamnolipid production by P.aeruginosa isolate P6. J Surfact Deterg 19:943–955. doi:10.1007/s11743-016-1845-4

    Article  CAS  Google Scholar 

  • Elshafie AE, Joshi SJ, Al-Wahaibi YM, Al-Bemani AS, Al-Bahry SN, Al-Maqbali D, Banat IM (2015) Sophorolipids production by Candida bombicola ATCC 22214 and its potential application in microbial enhanced oil recovery. Front Microbiol 6:1324. doi:10.3389/fmicb.2015.01324

    Article  PubMed  PubMed Central  Google Scholar 

  • Eraqi WA, Yassin AS, Ali AE, Amin MA (2016) Utilization of crude glycerol as a substrate for the production of rhamnolipid by Pseudomonas aeruginosa. Biotechnol Res Int 2016:1–9. doi:10.1155/2016/3464509

    Article  Google Scholar 

  • Espuny M, Egido S, Rodón I, Manresa A, Mercadé M (1996) Nutritional requeriments of a biosurfactant producing strain Rhodococcus sp 51T7. Biotechnol Lett 18:521–526. doi:10.1007/bf00140196

    Article  CAS  Google Scholar 

  • Fai AEC, Simiqueli APR, Andrade CJ, Ghiselli G, Pastore GM (2015) Optimized production of biosurfactant from Pseudozyma tsukubaensis using cassava wastewater and consecutive production of galactooligosaccharides: an integrated process. Biocatal Agric Biotechnol 4:535–542. doi:10.1016/j.bcab.2015.10.001

    Google Scholar 

  • Fan LL, Dong YC, Fan YF, Zhang J, Chen QH (2014) Production and identification of mannosylerythritol lipid-A homologs from the ustilaginomycetous yeast Pseudozyma aphidis ZJUDM34. Carbohydr Res 392:1–6. doi:10.1016/j.carres.2014.04.013

    Article  CAS  PubMed  Google Scholar 

  • Fan L, Li H, Niu Y, Chen Q (2016) Characterization and inducing melanoma cell apoptosis activity of Mannosylerythritol Lipids-A produced from Pseudozyma aphidis. PLOS ONE 11(2):e0148198. doi:10.1371/journal.pone.0148198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faria NT, Santos MV, Fernandes P, Fonseca LL, Fonseca C, Ferreira FC (2014) Production of glycolipid biosurfactants, mannosylerythritol lipids, from pentoses and D-glucose/D-xylose mixtures by Pseudozyma yeast strains. Process Biochem 49:1790–1799. doi:10.1016/j.procbio.2014.08.004

    Article  CAS  Google Scholar 

  • Fonseca CS, Faria NT, Ferreira FC. (2014) Enzymatic process for the production of mannosylerythritol lipids from lignocellulosic materials. Portugal PT106959

  • Franzetti A, Caredda P, La Colla P, Pintus M, Tamburini E, Papacchini M, Bestetti G (2009) Cultural factors affection biosurfactant production by Gordonia sp. BS29. Int Biodeter Biodegr 63:943–947. doi:10.1016/j.ibiod.2009.06.001

    Article  CAS  Google Scholar 

  • Franzetti A, Gandolfi I, Bestetti G, Smyth TJP, Banat IM (2010) Production and applications of trehalose lipid biosurfactants. Eur J Lipid Sci Tech 112:617–627. doi:10.1002/ejlt.200900162

    Article  CAS  Google Scholar 

  • Fukuoka T, Kawamura M, Morita T, Imura T, Sakai H, Abe M, Kitamoto D (2008) A badidiomycetous yeast, Pseudozyma crassa, produces novel diastereomers of conventional mannosylerythritol lipids as glycolipid biosurfacts. Carbohydr Res 343:2947–2955. doi:10.1016/j.carres.2008.08.034

    Article  CAS  PubMed  Google Scholar 

  • Funston SJ, Tsaousi K, Rudden M, Smyth TJ, Stevenson PS, Marchant R, Banat IM (2016) Characterising rhamnolipid production in Burkholderia thailandensis E264, a non-pathogenic producer. Appl Microbiol Biotechnol 100:7945–7956. doi:10.1007/s00253-016-7564-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao R, Falkeborg M, Xu X, Guo Z (2013) Production of sophorolipids with enhanced volumetric productivity by means of high cell density fermentation. Appl Microbiol Biotechnol 97:1103–1111. doi:10.1007/s00253-012-4399-z

    Article  CAS  PubMed  Google Scholar 

  • Gein SV, Kuyukina MS, Ivshina IB, Baeva TA, Chereshnev VA (2011) In vitro cytokine stimulation assay for glycolipid biosurfactant from Rhodococcus ruber: role of monocyte adhesion. Cytotechnology 63:559–566. doi:10.1007/s10616-011-9384-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giani C, Wullbrandt D, Rothert R, Meiwes J (1997) Pseudomonas aeruginosa and its use in a process for the biotechnological preparation of L-rhamnose. USA 5501966 A

  • Gross RA, Schofield MH (2011) Sophorolipids analog compositions. USA WO2011127101 A1

  • Gross RA, Shah V, Docel GF (2004) Spermicidal and virucidal properties of various forms of sophorolipids. USA US2004242501 A1

  • Gudiña EJ, Rangarajan V, Sen R, Rodrigues LR (2013) Potential therapeutic applications of biosurfactants. Trends Pharmacol 34:667–675. doi:10.1016/j.tips.2013.10.002

    Article  CAS  Google Scholar 

  • Gudiña EJ, Rodrigues AI, Alves E, Domingues MR, Teixeira JA, Rodrigues LR (2015) Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Bioresour Technol 177:87–93. doi:10.1016/j.biortech.2014.11.069

    Article  PubMed  CAS  Google Scholar 

  • Gudiña EJ, Rodrigues AI, de Freitas V, Azevedo Z, Teixeira JÁ, Rodrigues LR (2016) Valorization of agro-industrial wastes towards the production of rhamnolipids. Bioresour Technol 212:144–150. doi:10.1016/j.biortech.2016.04.027

    Article  PubMed  CAS  Google Scholar 

  • Gunawan S, Vorderbruggen MA, Armstrong CD (2015) Method of using sophorolipids or mannosylerythritol lipids as acid corrosion inhibitors in well treatment operations. USA US2015299556 A1

  • Guo Y-P, Hu Y-Y (2014) Solubilization of moderately hydrophobic 17 α-ethinylestradiol by mono- and di-rhamnolipid solutions. Colloids Surf A Physicochem Eng Asp 445:12–20. doi:10.1016/j.colsurfa.2013.12.076

    Article  CAS  Google Scholar 

  • Gupta R, Prabhune AA (2012) Structural determination and chemical esterification of the sophorolipids produced by Candida bombicola grown on glucose and alpha-linolenic acid. Biotechnol Lett 34:701–707. doi:10.1007/s10529-011-0818-y

    Article  CAS  PubMed  Google Scholar 

  • Haba E, Bouhdid S, Torrego-Solana N, Marqués AM, Espuny MJ, García-Celma MJ, Manresa A (2014) Rhamnolipids as emulsifying agents for essential oil formulations: antimicrobial effect against Candida albicans and methicillin-resistant Staphylococcus aureus. Int J Pharm 476:134–141. doi:10.1016/j.ijpharm.2014.09.039

    Article  CAS  PubMed  Google Scholar 

  • Haque F, Alfatah M, Ganesan K, Bhattacharyya MS (2016) Inhibitory effect of sophorolipid on Candida albicans biofilm formation and hyphal growth. Sci Rep 6:23575. doi:10.1038/srep23575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15. doi:10.1016/j.jhazmat.2009.03.137

    Article  CAS  PubMed  Google Scholar 

  • Harland CW, Botyanszki Z, Rabuka D, Bertozzi CR, Parthasarathy R (2009) Synthetic trehalose glycolipids confer desiccation resistance to supported lipid monolayers. Langmuir 25:5193–5198. doi:10.1021/la804007a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan M, Essam T, Yassin AS, Salama A (2016) Optimization of rhamnolipid production by biodegrading bacterial isolates using Plackett-Burman design. Int J Biol Macromol 82:573–579. doi:10.1016/j.ijbiomac.2015.09.057

    Article  CAS  PubMed  Google Scholar 

  • Hellmuth H, Bode N, Dreja M, Buhl A (2016) Detergent comprising a mannosylerythritol lipid. Germany DE102014221889

  • Henkel M, Müller MM, Küller JH, Lovaglio RB, Contiero J, Syldatk C, Hausmann R (2012) Rhamnolipids as biosurfactants from renewable resources: concepts for next-generation rhamnolipid production. Process Biochem 47:1207–1219. doi:10.1016/j.procbio.2012.04.018

    Article  CAS  Google Scholar 

  • Higashima T (2002) Novel functions and applications of trehalose. Pure Appl Chem 74:1263–1269. doi:10.1351/pac200274071263

    Google Scholar 

  • Hirata Y, Ryu M, Oda Y, Igarashi K, Nagatsuka A, Furuta T, Sugiura M (2009) Novel characteristics of sophorolipids, yeast glycolipid biosurfactants, as biodegradable low-foaming surfactants. J Biosci Bioeng 108:142–146. doi:10.1016/j.jbiosc.2009.03.012

    Article  CAS  PubMed  Google Scholar 

  • Hoq MM, Suzutani T, Toyoda T, Horiike T, Yoshida G, Azuma IM (1997) Role of gamma delta TCR + lymphocytes in the augmented resistance of trehalose 6,6′-dimycolate-treated mice to influenza virus infection. J GenVirol 78:1597–1603. doi:10.1099/0022-1317-78-7-1597

    CAS  Google Scholar 

  • Hošková M, Ježdík R, Schreiberová O, Chudoba J, Šír M, Čejková A, Masák J, Jirků V, Řezanka T (2015) Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures. J Biotechnol 1193:45–51. doi:10.1016/j.jbiotec.2014.11.014

    Article  CAS  Google Scholar 

  • Hošková M, Schreiberová O, Ježdík R, Chudoba J, Masák J, Sigler K, Řezanka T (2013) Characterization of rhamnolipids produced by non-pathogenic Acinetobacter and Enterobacter bacteria. Bioresour Technol 130:510–516. doi:10.1016/j.biortech.2012.12.085

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Ju L-K (2001) Purification of lactonic sophorolipids by crystalization. J Biotech 87:263–272. doi:10.1016/s0168-1656(01)00248-6

    Article  CAS  Google Scholar 

  • Hua Z, Chen J, Lun S, Wang X (2003) Influence of biosurfactants produced by Candida antarctica on surface properties of microorganism and biodegradation of n-alkanes. Water Res 37:4143–4150. doi:10.1016/s0043-1354(03)00380-4

    Article  CAS  PubMed  Google Scholar 

  • Im JH, Yanagishita H, Ikegami T, Takeyama Y, Idemoto Y, Koura N, Kitamoto D (2003) Mannosylerythritol lipids, yeast glycolipid biosurfactants, are potential affinity ligand materials for human immunoglobulin G. J Biomed Mater Res 65a:379–385. doi:10.1002/jbm.a.10491

    Article  CAS  Google Scholar 

  • Imura T, Hikosaka Y, Worakitkanchanakul W, Sakai H, Abe M, Konishi M, Minamikawa H, Kitamoto D (2007) Aqueous-phase behaviour of natural glycolipid biosurfactant mannosylerythritol lipid A: sponge, cubic, and lamellar phases. Langmuir 23:1659–1663. doi:10.1021/la0620814

    Article  CAS  PubMed  Google Scholar 

  • Imura T, Masuda Y, Minamikawa H, Fukuoka T, Konishi M, Morita T, Sakai H, Abe M, Kitamoto D (2010) Enzymatic conversion of diacetylated sophoroselipid into acetylated glucoselipid: surfasse-active properties of novel bolaform biosurfactants. J Oleo Sci 59:495–501. doi:10.5650/jos.59.495

    Article  CAS  PubMed  Google Scholar 

  • Imura T, Ohta N, Inoue K, Yagi N, Negishi H, Yanagishita H, Kitamoto D (2006) Naturally engineered glycolipid biosurfactants leading to distinctive self-assembled structures. Chem Eur J 12:2434–2440. doi:10.1002/chem.200501199

    Article  CAS  PubMed  Google Scholar 

  • Imura T, Yanagishita H, Kitamoto D (2004) Coacervate formation from natural glycolipid: one acetyl group on the headgroup triggers coacervate-to-vesicle transition. J Am Chem Soc 126:10804–10805. doi:10.1021/ja0400281

    Article  CAS  PubMed  Google Scholar 

  • Imura T, Yanagishita H, Ohira J, Sakai H, Abeb M, Kitamoto D (2005) Thermodynamically stable vesicle formation from glycolipid biosurfactant sponge phase. Colloids Surf B Biointerfaces 43:115–121. doi:10.1016/j.colsurfb.2005.03.015

    Article  CAS  PubMed  Google Scholar 

  • Inaba T, Tokumoto Y, Miyazaki Y, Inoue N, Maseda H, Nakajima-Kambe T, Uchiyama H, Nomura N (2013) Analysis of genes for succinoyl trehalose lipid production and increasing production in Rhodococcus sp. strain SD-74. Appl Environ Microbiol 79:7082–7890. doi:10.1128/aem.01664-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irfan-Maqsood M, Seddiq-Shams M (2014) Rhamnolipids: well-characterized glycolipids with potential broad applicability as biosurfactants. Ind Biotechnol 10:285–291. doi:10.1089/ind.2014.0003

    Article  CAS  Google Scholar 

  • Ishikawa E, Ishikawa T, Morita YS, Toyonaga K, Yamada H, Takeuchi O, Kinoshita T, Akira S, Yoshida Y, Yamasaki S (2009) Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206:2879–2888. doi:10.1084/jem.20091750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isoda H, Shinmoto H, Kitamoto D, Matsumura M, Nakahara T (1997a) Microbial extracellular glycolipid induction of differentiation and inhibition of the protein kinase C activity of human promyelocytic leukemia cell line HL60. Biosci Biotech Bioch 61:609–614. doi:10.1271/bbb.61.609

    Article  CAS  Google Scholar 

  • Isoda H, Shinmoto H, Kitamoto D, Matsumura M, Nakahara T (1997b) Differentiation of human promyelocytic leukemia cell line HL60 by microbial extracellular glycolipids. Lipids 32:263–271. doi:10.1007/s11745-997-0033-0

    Article  CAS  PubMed  Google Scholar 

  • Ivshina I, Kostina L, Krivoruchko A, Kuyukina M, Peshkur T, Anderson P, Cunningham C (2016) Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231. J Hazard Mater 312:8–17. doi:10.1016/j.jhazmat.2016.03.007

    Article  CAS  PubMed  Google Scholar 

  • Jacques P (2011) Surfactin and other lipopeptides from Bacillus spp. In: Soberón-Chávez G (ed) Biosurfactants, microbiology monographs 20. Springer-Verlag, Berlin, pp. 57–92

    Google Scholar 

  • Jain NK, Roy I (2009) Effect of trehalose on protein structure. Protein Sci 18:24–36. doi:10.1002/pro.3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jamal A, Qureshi MZ, Ali N, Ali MI, Hameed A (2014) Enhanced production of rhamnolipids by Pseudomonas aeruginosa JQ927360 using response surface methodology. Asian J Chem 26:1044–1048. doi:10.14233/ajchem.2014.15851

    CAS  Google Scholar 

  • Jiang L, Shen C, Long X, Zhang G, Meng Q (2014) Rhamnolipids elicit the same cytotoxic sensitivity between cancer cell and normal cell by reducing surface tension of culture medium. Appl Microbiol Biotechnol 98:10187–10196. doi:10.1007/s00253-014-6065-0

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Peñalver P, Gea T, Sánchez A, Font X (2016) Production of sophorolipids from winterization oil cake by solid-state fermentation: optimization, monitoring and effect of mixing. Biochem Eng J 115:93–100. doi:10.1016/j.bej.2016.08.006

    Article  CAS  Google Scholar 

  • Joshi-Navare K, Prabhune A (2013) A biosurfactant-sophorolipid acts in synergy with antibiotics to enhance their efficiency. Biomed Res Int 512495:1–8. doi:10.1155/2013/512495

    Article  CAS  Google Scholar 

  • Kalyani ALT, Naga SG, Aditya AKG, Girija SG, Prabhakar T (2014) Production of rhamnolipid biosurfactant by Streptomyces coelicoflavus (NBRC 15399) using Plackett-Burman design. Eur J Biotechnol Biosci 1:7–13

    Google Scholar 

  • Kasture MB, Patel P, Prabhune AA, Ramana CV, Kulkarni AA, Prasad BLV (2008) Synthesis of silver nanoparticles by sophorolipids: effect of temperature and sophorolipid structure on the size of particles. J Chem Sci 120:515–520. doi:10.1007/s12039-008-0080-6

    Article  CAS  Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress reponses to high-osmolality environments. Arch Microbiol 170:319–330. doi:10.1007/s002030050649

    Article  CAS  PubMed  Google Scholar 

  • Kim SK, Kim YC, Lee S, Kim JC, Yun MY, Kim IS (2011) Insecticidal activity of rhamnolipid isolated from Pseudomonas sp EP-3 against green peach aphid (Myzus persicae). J Agr Food Chem 59:934–938. doi:10.1021/jf104027x

    Article  CAS  Google Scholar 

  • Kiran GS, Ninawe AS, Lipton AN, Padian V, Selvin J (2016) Rhamnolipid biosurfactants: evolutionary implications, applications and future prospects from untapped marine resource. Critical Rev Biotechnol 36:399–415. doi:10.3109/07388551.2014.979758

    Google Scholar 

  • Kitamoto D, Isoda H, Nakahara T (2002) Functions and potential application of glycolipid biosurfactants—from energy-saving materials to gene delivery carriers. J Biosci Bioeng 94:187–201. doi:10.1016/s1389-1723(02)80149-9

    Article  CAS  PubMed  Google Scholar 

  • Kitamoto D, Morita T, Fukuoka T, Konishi M, Imura T (2009) Self-assembling properties of glycolipid biosurfactants and their potential applications. Curr Opin Colloid Interface Sci 14:315–328. doi:10.1016/j.cocis.2009.05.009

    Article  CAS  Google Scholar 

  • Kitamoto D, Yanagishita H, Endo A, Nakaiwa M, Nakane T, Akiya T (2001) Remarkable antiagglomeration effect of a yeast biosurfactant, diacylmannosylerythritol, on ice-water slurry for cold termal storage. Biotechonol Progr 17:362–365. doi:10.1021/bp000159f

    Article  CAS  Google Scholar 

  • Kitamoto D, Yanagishita H, Shinbo T, Nakane T, Kamisawa C, Nakahara T (1993) Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J Biotechnol 29:91–96. doi:10.1016/0168-1656(93)90042-l

    Article  CAS  Google Scholar 

  • Koh A, Gross R (2016a) Molecular editing of sophorolipids by esterification of lipid moieties: effects on interfacial properties at paraffin and synthetic crude oil-water interfaces. Colloids Surf A Physicochem Eng Asp 507:170–181. doi:10.1016/j.colsurfa.2016.07.084

    Article  CAS  Google Scholar 

  • Koh A, Gross R (2016b) A versatile family of sophorolipid esters: engineering surfactant structure for stabilization of lemon oil-water interfaces. Colloids Surf A Physicochem Eng Asp 507:152–163. doi:10.1016/j.colsurfa.2016.07.089

    Article  CAS  Google Scholar 

  • Konishi M, Imura T, Fukuoka T, Morita T, Kitamoto D (2007) A yeast glycolipid biosurfactant, mannosyl-erythritol lipid, shows high binding affinity towards lectins on a self-assembled monolayer system. Biotechnol Lett 29:473–480. doi:10.1007/s10529-006-9261-x

    Article  CAS  PubMed  Google Scholar 

  • Konishi M, Nagahama T, Fukuoka T, Morita T, Imura T, Kitamoto D, Hatada Y (2011) Yeast extract stimulates production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma hubeiensis SY62. J Biosci Bioeng 111(6):702–705. doi:10.1016/j.jbiosc.2011.02.004

    Article  CAS  PubMed  Google Scholar 

  • Konishi M, Morita T, Fukuoka T, Imura T, Kakugawa K, Kitamoto D (2008) Efficient production of mannosylerythritol lipids with high hydrophilicity by Pseudozyma hubeiensis KM-59. Appl Microbiol Biotechnol 78:37–46. doi:10.1007/s00253-007-1292-2

    Article  CAS  PubMed  Google Scholar 

  • Konishi M, Yoshida Y, Horiuchi J (2015) Efficient production of sophorolipids by Starmerella bombicola using a corncob hydrolysate medium. J Biosci Bioeng 119:317–322. doi:10.1016/j.jbiosc.2014.08.007

    Article  CAS  PubMed  Google Scholar 

  • Kosaric N (1992) Biosurfactant in industry. Pure Appl Chem 64:1731–1737

    Article  CAS  Google Scholar 

  • Kryachko Y, Nathoo S, Lai P, Voordouw J, Prenner EJ, Voordouw G (2013) Prospects for using native and recombinant rhamnolipid producer for microbially enhanced oil recovery. Int Biodeter Biodegr 81:133–140. doi:10.1016/j.ibiod.2012.09.012

    Article  CAS  Google Scholar 

  • Kügler JH, Muhle-Goll C, Kühl B, Kraft A, Heinzler R, Kirschlöfer F, Henkel M, Wray V, Luy B, Brenner-Weiss G, Lang S, Syldatk C, Hausmann R (2014) Trehalose lipid biosurfactants produced by the actinomycetes Tsukamurella spumae and T. pseudospumae. Appl Microbiol Biotechnol 98:8905–8915. doi:10.1007/s00253-014-5972-4

    Article  PubMed  CAS  Google Scholar 

  • Kumar CG, Mamidyla SK, Sujitha P, Muluka H, Akkenapally S (2012) Evaluation of critical nutritional parameters and their significance in the production of rhamnolipid biosurfactants from Pseudomonas aeruginosa BS-161R. Biotechnol Prog 28:1507–1516. doi:10.1002/btpr.1634

    Article  CAS  PubMed  Google Scholar 

  • Kundu D, Hazra C, Chaudhari A (2016a) Biodegradation of 2,6-dinitrotoluene and plant growth promoting traits by Rhodococcus pyridinivorans NT2: identification and toxicological analysis of metabolites and proteomic insights. Biocatal Agric Biotechnol 8:55–65. doi:10.1016/j.bcab.2016.08.004

    Google Scholar 

  • Kundu D, Hazra C, Chaudhari A (2016b) Bioremediation potential of Rhodococcus pyridinivorans NT2 in nitrotoluene-contaminated soils: the effectiveness of natural attenuation, biostimulation and bioaugmentation approaches. Soil Sediment Contam 25:637–651. doi:10.1080/15320383.2016.1190313

    Article  CAS  Google Scholar 

  • Kundu D, Hazra C, Dandi N, Chaudhari A (2013) Biodegradation of 4-nitrotoluene with biosurfactant production by Rhodococcus pyridinivorans NT2: metabolic pathway, cell surface properties and toxicological characterization. Biodegradation 24:775–793. doi:10.1007/s10532-013-9627-4

    Article  CAS  PubMed  Google Scholar 

  • Kuppert D, Kottke U, Lattich J, Volk M, Wenk HH, Cabirol F, Schilling M, Schaffer S, Allef P (2014) Detergent composition for textiles comprising rhamnolipids having a predominant share of di-rhamnolipids. USA US2014296125 A1

  • Kurtzman CP, Price NPJ, Ray KJ, Kuo T–M (2010) Production of sophorolipid biosurfactants by multiple species of the Starmerella (Candida) bombicola yeast clade. FEMS Microbiol Lett 311:140–146. doi:10.1111/j.1574-6968.2010.02082.x

    Article  CAS  PubMed  Google Scholar 

  • Kuyukina MS, Ivshina IB (2010) Application of Rhodococcus in bioremediation of contaminated environments. In: Alvarez HM (ed) Biology of Rhodococcus. Springer, Berlin, pp. 231–262. doi:10.1007/978-3-642-12937-7_9

    Chapter  Google Scholar 

  • Kuyukina MS, Ivshina IB, Baeva TA, Kochina OA, Gein SV, Chereshnev VA (2015) Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities. New Biotechnol 32:559–568. doi:10.1016/j.nbt.2015.03.006

    Article  CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB, Gein SV, Baeva TA, Chereshnev VA (2007) In vitro immunomodalating acitivity of biosurfactant glycolipid complex from Rhodococcus rubber. Bull Exp Biol Med 144:326–330. doi:10.1007/s10517-007-0324-3

    Article  CAS  PubMed  Google Scholar 

  • Kuyukina MS, Ivshina IB, Korshunova IO, Stukova GI, Krivoruchko AV (2016) Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene. AMB Exp 6:14. doi:10.1186/s13568-016-0186-z

    Article  CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB, Makarov SO, Litvinenko LV, Cunningham CL, Philp JC (2005) Effect of biosurfactant on crude oil desorption and mobilization in a soil system. Environ Int 31:155–161. doi:10.1016/j.envint.2004.09.009

    Article  CAS  PubMed  Google Scholar 

  • Lang S (2002) Biological amphiphilies (microbial biosurfactants). Curr Opin Colloid Interface Sci 7:12–20. doi:10.1016/s1359-0294(02)00007-9

    Article  CAS  Google Scholar 

  • Lang S, Philp JC (1998) Surface-active lipids in rhodococci. Anton Leeuw 74:59–70

    Article  CAS  Google Scholar 

  • Lang S, Wullbrandt D (1999) Rhamnose lipids—biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32. doi:10.1007/s002530051358

    Article  CAS  PubMed  Google Scholar 

  • Lang S, Brakemeier A, Heckmann R, Spockner S, Rau U (2000) Production of native and modified sophorose lipids. Chim Oggi 18:76–79

    CAS  Google Scholar 

  • Lang S, Katsiwela E, Wagner F (1989) Antimicrobial effects of biosurfactants. Fett Wiss Technol 91:363–366. doi:10.1002/lipi.19890910908

    CAS  Google Scholar 

  • Lechuga M, Fernández-Serrano M, Jurado E, Núñez-Olea J, Ríos F (2016) Acute toxicity of anionic and non-ionic surfactants to aquatic organisms. Ecotoxicol Environ Saf 125:1–8. doi:10.1016/j.ecoenv.2015.11.027

    Article  CAS  PubMed  Google Scholar 

  • Li S, Pi Y, Bao M, Zhang C, Zhao D, Li Y, Sun P, Lu J (2015) Effect of rhamnolipid biosurfactant on solubilization of polycyclic aromatic hydrocarbons. Mar Pollut Bull 101:219–225. doi:10.1016/j.marpolbul.2015.09.059

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Shao B, Long X, Yao Y, Meng Q (2016) Foliar penetration enhanced by biosurfactant rhamnolipid. Colloids Surf B Biointerfaces 145:548–554. doi:10.1016/j.colsurfb.2016.05.058

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Chen Y, Xu R, Jia Y (2013) Screening and evaluation of biosurfactant-producing strains isolated from oilfield wastewater. Indian J Microbiol 53:168–174. doi:10.1007/s12088-013-0379-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long X, Zhang G, Shen C, Guansong S, Wang R, Yin L, Meng Q (2013) Application of rhamnolipid as a novel biodemulsifier for destabilizing waste crude oil. Bioresour Technol 131:1–5. doi:10.1016/j.biortech.2012.12.128

    Article  CAS  PubMed  Google Scholar 

  • Lotfabad TB, Abassi H, Ahmadkhaniha R, Roostaazad R, Massomi F, Zahiri HS, Ahmadian G, Vali H, Noghabi KA (2010) Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Colloids Surf B Biointerfaces 81:397–405. doi:10.1016/j.colsurfb.2010.06.026

    Article  CAS  PubMed  Google Scholar 

  • Lourith N, Kanlayavattanakul M (2009) Natural surfactants used in cosmetics: glycolipids. Int J Cosmetic Sci 31:255–261. doi:10.1111/j.1468-2494.2009.00493.x

    Article  CAS  Google Scholar 

  • Lovaglio RB, Silva VL, Ferreira H, Hausmann R, Contiero J (2015) Rhamnolipids know-how: looking for strategies for its industrial dissemination. Biotechology Adv 33:1715–1726. doi:10.1016/j.biotechadv.2015.09.002

    Article  CAS  Google Scholar 

  • Luna JM, Rufino RD, Sarubbo LA, Rodrigues LRM, Teixeira JAC, Campos-Takaki GM (2011) Evaluation antimicrobial and antiadhesive properties of the biosurfactant Lunasan produced by Candida sphaerica UCP 0995. Curr Microbiol 62:1527–1534. doi:10.1007/s00284-011-9889-1

    Article  CAS  PubMed  Google Scholar 

  • Ma K-Y, Sun M-Y, Dong W, He C-Q, Chen F-L, Ma Y-L (2016) Effects of nutrition optimization strategy on rhamnolipid production in a Pseudomonas aeuroginosa strain DN1 for bioremediation of crude oil. Biocatal Agric Biotechnol 6:144–151. doi:10.1016/j.bcab.2016.03.008

    Google Scholar 

  • Ma X, Li H, Song X (2012) Surface and biological activity of sophorolipid molecules produced by Wickerhamiella domercqiae var. sophorolipid CGMCC 1576. J Colloid Interface Sci 376:165–172. doi:10.1016/j.jcis.2012.03.007

    Article  CAS  PubMed  Google Scholar 

  • Ma XJ, Li H, Wang DX, Song X (2014) Sophorolipid production from delignined corncob residue by Wickerhamiella domercqiae var. sophorolipid CGMCC1576 and Cryptococcus curvatus ATCC 96219. Appl Microbiol Biotechnol 98:475–483. doi:10.1007/s00253-013-4856-3

    Article  CAS  PubMed  Google Scholar 

  • Maddikeri GL, Gogate PR, Pandit AB (2015) Improved synthesis of sophorolipids from waste cooking oil using fed batch approach in the presence of ultrasound. Chem Eng J 263:479–487. doi:10.1016/j.cej.2014.11.010

    Article  CAS  Google Scholar 

  • Magalhães L, Nitschke M (2013) Antimicrobial activity of rhamnolipids against Listeria monocytogenes and their synergisitic interaction with nisin. Food Control 29:138–142. doi:10.1016/j.foodcont.2012.06.009

    Article  CAS  Google Scholar 

  • Maingault M (1999) Utilization of sophorolipids as therapeutically active substances or cosmetic products, in particular for the treatment of the skin. USA US5981497 A

  • Marqués AM, Pinazo A, Farfan M, Aranda FJ, Teruel JA, Ortiz A, Manresa A, Espuny MJ (2009) The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7. Chem Phys Lipids 158:110–117. doi:10.1016/j.chemphyslip.2009.01.001

    Article  PubMed  CAS  Google Scholar 

  • Mata-Sandoval JC, Karns J, Torrents A (2001) Effect of nutritional and environmental conditions on the production and composition of rhamnolipids by P. aeruginosa UG2. Microbiol Res 155:249–256. doi:10.1016/s0944-5013(01)80001-x

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y, Cao E, Ueoka R (2013a) Novel liposomes composed of dimyristoylphosphatidylcholine and trehalose surfactants inhibit the growth of tumor cells along with apoptosis. Biol Pharm Bull 36:1258–1268. doi:10.1248/bpb.b13-00266

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y, Cao E, Ueoka R (2013b) Growth inhibition by novel liposomes including trehalose surfactant against hepatocarcinoma cell along with apoptosis. Anticancer Res 33:4727–4740

    CAS  PubMed  Google Scholar 

  • Matsumoto Y, Kuwabara K, Ichihara H, Kuwano M (2016) Therapeutic effects of trehalose liposomes against lymphoblastic leukemia leading to apoptosis in vitro and in vivo. Bioorg Med Chem Lett 26:301–305. doi:10.1016/j.bmcl.2015.12.025

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2008a) Identification of Ustilago cynodontis as a new producer of glycolipid biosurfactants, mannosylerythritol lipids, based on ribosomal DNA sequences. J Oleo Sci 57:549–556. doi:10.5650/jos.57.549

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Konishi M, Fukuoka T, Imura T, Yamamoto S, Kitagawa M, Sogabe A, Kitamoto D (2008b) Identification of Pseudozyma graminicola CBS 10092 as a producer of glycolipid biosurfactants, mannosylerythritol lipids. J Oleo Sci 57:123–131. doi:10.5650/jos.57.123

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Fukuoka T, Imura T, Hirose N, Kitamoto D (2012) Isolation and screening of glycolipid biosurfactant producers from sugarcane. Biosci Biotechnol Biochem 76:1788–1791. doi:10.1271/bbb.120251

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Fukuoka T, Imura T, Kitamoto D (2013) Production of mannosylerythritol lipids and their application in cosmetics. Appl Microbiol Biotechnol 97:4691–4700. doi:10.1021/bp000159f

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Fukuoka T, Imura T, Kitamoto D (2015) Mannosylerythritol lipids: production and applications. J Oleo Sci 64:133–141. doi:10.5650/jos.ess14185

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Ishibashi Y, Fukuoka T, Imura T, Sakai H, Abe M, Kitamoto D (2009a) Production of glycolipid biosurfactants, mannosylerythritol lipids, by Ustilago scitaminea NBRC 32730. Biosci Biotechol Biochem 73:788–792. doi:10.1271/bbb.80901

    Article  CAS  Google Scholar 

  • Morita T, Ishibashi Y, Fukuoka T, Imura T, Sakai H, Abe M, Kitamoto D (2009b) Production of glycolipids biosurfactants, mannosylerythritol lipids, using sucrose by fungal and yeast strains, and their interfacial properties. Biosci Biotechol Biochem 73:2352–2355. doi:10.1271/bbb.90439

    Article  CAS  Google Scholar 

  • Morita T, Ishibashi Y, Hirose N, Wada K, Takahashi M, Fukuoka T, Imura T, Sakai H, Abe M, Kitamoto D (2011a) Production and characterization of a glycolipid biosurfactant, mannosylerythritol lipid B, from sugarcane juice by Ustilago scitaminea NBRC 32730. Biosci Biotechol Biochem 75:1371–1376. doi:10.1271/bbb.110221

    Article  CAS  Google Scholar 

  • Morita T, Kitagawa M, Yamamoto S, Sogabe A, Imura T, Fukuoka T, Kitamoto D (2010a) Glycolipid biosurfactants, mannosylerythritol lipids, repair the damaged hair. J Oleo Sci 59:267–272. doi:10.5650/jos.59.267

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Ogura Y, Takashima M, Hirose N, Fukuoka T, Imura T, Kondo Y, Kitamoto D (2011b) Isolation of Pseudozyma churashimaensis sp. Nov., a novel ustilaginomycetous yeast species as a producer of glycolipid biosurfactants, mannosylerythritol lipids. J Biosci Bioengin 112:137–144. doi:10.1016/j.jbiosc.2011.04.008

    Article  CAS  Google Scholar 

  • Morita T, Takashima M, Fukuoka T, Konishi M, Imura T, Kitamoto D (2010b) Isolation of basidiomycetous yeast Pseudozyma tsukubaensis and production of glycolipid biosurfactant, a diasteomer type of mannosylerythritol lipid-B. Appl Microbiol Biotechnol 88:679–688. doi:10.1007/s00253-010-2762-5

    Article  CAS  PubMed  Google Scholar 

  • Morita Y, Tadokoro S, Sasai M, Kitamoto D, Hirashima N (2011c) Biosurfactant mannosyl-erythritol lipid inhibits secretion of inflammatory mediators from RBL-2H3 cells. BBA- Gen Subjects 810:1302–1308. doi:10.1016/j.bbagen.2011.07.002

    Article  CAS  Google Scholar 

  • Morya VK, Park J, Kim TJ, Jeon S, Kim E (2013) Production and characterization of low molecular weight sophorolipid under fed-batch culture. Bioresour Technol 143:282–288. doi:10.1016/j.biortech.2013.05.094

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee AK, Das K (2010) Microbial surfactants and their potential applications: an overview. In: Biosurfactants; Springer series: Advances in Experimental Medicine and Biology. Sen, R. (Ed). Springer Science + Business Media. New York, USA, .672, pp. 54–64.

  • Muller MM, Hausamann R (2011) Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production. Appl Microbiol Biotechnol 91:251–264. doi:10.1007/s00253-011-3368-2

    Article  PubMed  CAS  Google Scholar 

  • Mutalik SR, Vaidya BK, Joshi RM, Desai KM, Nene SN (2008) Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574. Bioresour Technol 99:1875–7880. doi:10.1016/j.biortech.2008.02.027

    Article  CAS  Google Scholar 

  • Nalini S, Parthasarathi R (2013) Biosurfactant production by Serratia rubidaea SNAU02 isolated from hydrocarbon contaminated soil and its physico-chemical characterization. Bioresour Tech 147:619–622. doi:10.1016/j.biortech.2013.08.041

    Article  CAS  Google Scholar 

  • Nalini S, Parthasarathi R (2014) Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as biocontrol agent. Bioresour Technol 173:231–238. doi:10.1016/j.biortech.2014.09.051

    Article  CAS  PubMed  Google Scholar 

  • Nayak AS, Vijaykumar MH, Karegoudar TB (2009) Characterization of biosurfactant produced by Pseudoxanthomonas sp. PNK-04 and its application in bioremediation. Int Biodeterior Biodegradation 63:73–79. doi:10.1016/j.ibiod.2008.07.003

    Article  CAS  Google Scholar 

  • Nguyen TTL, Edelen A, Neighbors B, Sabatini DA (2010) Biocompatible lecithin-based microemulsions with rhamnolipid and sophorolipid biosurfactants: formulation and potential applications. J Colloid Interface Sci 348:498–504. doi:10.1016/j.jcis.2010.04.053

    Article  CAS  PubMed  Google Scholar 

  • Nikolopoulou M, Pasadakis N, Norf H, Kalogerakis N (2013) Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids. Mar Pollut Bull 77:37–44. doi:10.1016/j.marpolbul.2013.10.038

    Article  CAS  PubMed  Google Scholar 

  • Nitschke M, Costa SGVAO (2007) Biosurfactants in food industry. Trends Food Sci Tech 18:252–259. doi:10.1016/j.tifs.2007.01.002

    Article  CAS  Google Scholar 

  • Nitschke M, Pastore GM (2003) Cassava flour wastewater as a substrate for biosurfactant production. Appl Biochem Biotechnol 106:295–301. doi:10.1007/978-1-4612-0057-4_24

    Article  Google Scholar 

  • Nitschke M, Pastore GM (2006) Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour Technol 97:336–341. doi:10.1016/j.biortech.2005.02.044

    Article  CAS  PubMed  Google Scholar 

  • Nitschke M, Costa SGVAO, Contiero J (2005) Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Adv 21:1593–1600. doi:10.1021/bp050239p

    CAS  Google Scholar 

  • Ohlendorf B, Lorezen W, Kehraus S, Krick A, Bode HB, König GM (2009) Myxotyrosides A and B, unusual rhamnosides from Myxococcus sp. J Nat Prod 72:82–86. doi:10.1021/np8005875

    Article  CAS  PubMed  Google Scholar 

  • Onwosi CO, Odibo FJ (2012) Effects of carbon and nitrogen sources on rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from soil. World J Microbiol Biotechnol 28:937–942. doi:10.1007/s11274-011-0891-3

    Article  CAS  PubMed  Google Scholar 

  • Ortiz A, Teruel JA, Manresa A, Espuny MJ, Marqués A, Aranda FJ (2011) Effects of a bacterial trehalose lipid on phosphatidylglycerol membranes. Biochim Biophys Acta 1808:2067–2072. doi:10.1016/j.bbamem.2011.05.003

    Article  CAS  PubMed  Google Scholar 

  • Pacheco GJ, Ciapina EMP, Gomes EB, Pereira Junior N (2010) Biosurfactant production by Rhodococcus erythropolis and its application to oil removal. Braz J Microbiol 41:685–693. doi:10.1590/s1517-83822010000300019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parekh VJ, Patravale VB, Pandit AB (2012) Mango kernel fat: a novel lipid source for the fermentative production of sophorolipid biosurfactant using Starmerella bombicola NRRL-Y 17069. Ann Biol Res 3:1798–1803

    CAS  Google Scholar 

  • Parry AJ, Parry NJ, Peilow AC, Stevenson PS (2012) Combinations of rhamnolipids and enzymes for improved cleaning. USA WO2012010406 A1

  • Peng Y, Munoz-Pinto DJ, Chen M, Decatur J, Hahn M, Gross RA (2014) Poly(sophorolipid) structural variation: effects on biomaterial physical and biological properties. Biomacromolecules 15:4214–4227. doi:10.1021/bm501255j

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Totsingan F, Meier MAR, Steinmann M, Wurm F, Koh A, Gross RA (2015) Sophorolipids: expanding structural diversity by ring-opening cross-metathesis. Eur J Lipid Sci Tech 117:217–228. doi:10.1002/ejlt.201400466

    Article  CAS  Google Scholar 

  • Pereira AG, Pacheco GJ, Tavares LF, Neves BC, Kronemberger FA, Reis RS, Freire DMG (2013) Optimization of biosurfactant production using waste from biodiesel industry in a new membrane assisted bioreactor. Process Biochem 48:1271–1278. doi:10.1016/j.procbio.2013.06.028

    Article  CAS  Google Scholar 

  • Petrikov K, Delegan Y, Surin A, Ponamoreva O, Puntus I, Filonov A, Bonorin A (2013) Glycolipids of Pseudomonas and Rhodococcus oil-degrading bacteria used in bioremediation preparations: formation and structure. Process Biochem 48:931–935. doi:10.1016/j.procbio.2013.04.008

    Article  CAS  Google Scholar 

  • Phillips CA (2016) Bacterial biofilms in food processing environments: a review of recent developments in chemical and biological control. Int J Food Sci Tech 51:1731–1743. doi:10.1111/ijfs.13159

    Article  CAS  Google Scholar 

  • Pinzon NM, Zhang Q, Koganti S, Ju LK (2009) Advances in bioprocess development of rhamnolipid and sophorolipid production. In: Hayes DG, Kitamoto D, Solaiman DKY, Ashby RD (eds) Biobase surfactants and detergents—synthesis, properties, and applications. AOCS Press, Urbana, IL, pp. 77–105

    Google Scholar 

  • Prabhune A, Fox SR, Ratledge C (2002) Transformation of arachidonic acid to 19-hydroxy- and 20-hydroxy-eicosatetraenoic acids using Candida bombicola. Biotechnol Lett 24:1041–1044. doi:10.1023/A:1015662013985

    Article  CAS  Google Scholar 

  • Price NPJ, Ray KJ, Vermillion KE, Dunlap CA, Kurtzman CP (2012) Structural characterization of novel sophorolipid biosurfactants from a newly identified species of Candida yeast. Carbohydr Res 348:33–41. doi:10.1016/j.carres.2011.07.016

    Article  CAS  PubMed  Google Scholar 

  • Quadros CP, Duarte MCT, Pastore GM (2011) Biological activies of a mixture of biosurfactant from Bacillus subtilis and alkaline lipase from Fusarium oxysporum. Braz J Microbiol 42:354–361. doi:10.1590/s1517-83822011000100045

    Article  Google Scholar 

  • Rashad MM, Nooman MU, Ali MM, Al-Kashef AS, Mahmound AE (2014) Production, characterization and anticancer activity of Candida bombicola sophorolipids by means of solid state fermentation of sunflower oil cake and soybean oil. Grasas Aceites 65(2):e017. doi:10.3989/gya.098413

    Article  CAS  Google Scholar 

  • Rau U, Nguyen LA, Schulz S, Wray V, Nimtz M, Roeper H, Koch H, Lang S (2005) Formation and analysis of mannosylerythritol lipids secreted by Pseudozyma aphidis. Appl Microbiol Biotechol 66:551–559. doi:10.1007/s00253-004-1672-9

    Article  CAS  Google Scholar 

  • Recke VK, Beyrle C, Gerlitzki M, Hausmann R, Syldatk C, Wray V, Tokuda H, Suzuki N, Lang S (2013) Lipase-catalyzed acylation of microbial mannosylerythritol lipids (biosurfactants) and their characterization. Carbohydr Res 24(373):82–88. doi:10.1016/j.carres.2013.03.013

    Article  CAS  Google Scholar 

  • Ribeiro IA, Bronze MR, Castro MF, Ribeiro MHL (2012) Optimization and correlation of HPLC-ELSD and HPLC-MS/MS methods for identification and characterization of sophorolipids. J Chromatogr B 899:72–88. doi:10.1016/j.jchromb.2012.04.037

    Article  CAS  Google Scholar 

  • Ribeiro IAC, Faustino CMC, Guerreiro PS, Frade RFM, Bronze MR, Castro MF, Ribeiro MHL (2015) Development of novel sophorolipids with improved cytotoxic activity toward MDA-MB-231 breast cancer cells. J Mol Recognit 28:155–165. doi:10.1002/jmr.2403

    Article  CAS  PubMed  Google Scholar 

  • Rikalovic MG, Abdel-Mawgoud AM, Déziel E, Gojgic-Cvijovic GD, Nestorovic Z, Vrvic MM, Karadzic IM (2013) Comparative analysis of rhmanolipids from novel environmental isolates of Pseudomonas aeruginosa. J Surfactants and Deterg 16:673–682. doi:10.1007/s11743-013-1462-4

    Article  CAS  Google Scholar 

  • Rispoli FJ, Badia D (2009) A new efficient mixture screening design for optimization of media. Biotechnol Prog 25:980–985. doi:10.1002/btpr.225

    Article  CAS  PubMed  Google Scholar 

  • Rispoli FJ, Badia D, Shah V (2010) Optimization of the fermentation media for sophorolipid production from Candida bombicola ATCC 22214 using a simplex centroid design. Biotechnol Prog 26:938–944. doi:10.1002/btpr.399

    CAS  PubMed  Google Scholar 

  • Rocha M, Mendes J, Giro M, Melo V, Gonçaves L (2014) Biosurfactant production by Pseudomonas aeruginosa MSIC02 in chashew apple juice using a 24 full factorial experimental design. Chem Ind Chem Eng Q 20:49–58. doi:10.2298/ciceq120518100r

    Article  CAS  Google Scholar 

  • Roelants SLKW, Ciesielska K, De Maeseneire SL, Everaert B, Denon Q, Moens H, Vanlerberghe B, Van Bogaert INA, Van der Meeren P, De Vreese B, Soetaert W (2016) Towards the industrialization of new biosurfactants: biotechnological opportunities for the lactone esterase gene from Starmerella bombicola. Biotechnol Bioeng 11:550–559. doi:10.1002/bit.25815

    Article  CAS  Google Scholar 

  • Rolland F, Moore B, Shee J (2002) Sugar sensing and signaling in plant. Plant Cell 14:S185–S205. doi:10.1105/tpc.010455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rooney AP, Price NPJ, Ray KJ, Kuo T-M (2009) Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility. FEMS Microbiol Lett 295:82–87. doi:10.1111/j.1574-6968.2009.01581.x

    Article  CAS  PubMed  Google Scholar 

  • Rudden M, Tsauosi K, Marchant R, Banat IM, Smyth TJ (2015) Development and validation of an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for the quantitative determination of rhamnolipid congeners. Appl Microbiol Biotechnol 99:9177–9187. doi:10.1007/s00253-015-6837-1

    Article  CAS  PubMed  Google Scholar 

  • Ryll R, Kumazawa Y, Yano I (2001) Immunological properties of trehalose dimycolate (cord factor) and other mycolic acid-containing glycolipids—a review. Microbiol Immunol 45:801–811. doi:10.1111/j.1348-0421.2001.tb01319.x

    Article  CAS  PubMed  Google Scholar 

  • Řezanka T, Siristova L, Sigler K (2011) Rhamnolipid-producing thermophilic bacteria of species Thermus and Meiothermus. Extremophiles 15:697–709. doi:10.1007/s00792-011-0400-5

    Article  PubMed  CAS  Google Scholar 

  • Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016. doi:10.1007/s00253-012-4641-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajna KV, Sukumaran RK, Jayamurthy H, Reddy KK, Kanjilal S, Prasad RBN, Pandey A (2013) Studies on biosurfactants from Pseudozyma sp. NII 08165 and their potential application as laundry detergent additives. Biochem Eng J 78:85–92. doi:10.1016/j.bej.2012.12.014

    Article  CAS  Google Scholar 

  • Salmani Abyaneh A, Fazaelipoor MH (2016) Evaluation of rhamnolipid (RL) as a biosurfactant for the removal of chromium from aqueous solutions by precipitate flotation. J Environ Manag 165:184–187. doi:10.1016/j.jenvman.2015.09.034

    Article  CAS  Google Scholar 

  • Sari M, Kanti A, Artika M, Kusharyoto W (2013) Identification of Pseudozyma hubeiensis Y10BS025 as a potent producer of glycolipid biosurfactant mannosylerythritol lipids. Am J Biochem Biotechnol 9:430–437. doi:10.3844/ajbbsp.2013.430.437

    Article  CAS  Google Scholar 

  • Schulz A, Willemsen Y, Schimiedel P, Kropf C, Bode N, Hellmuth H (2016) Removal of antiperspirant soilings. Germany DE102014225184

  • Sha R, Jiang L, Meng Q, Zhang G, Song Z (2011) Producing cell-free culture broth of rhamnolipids as a cost-effective fungicide against plant pathogens. J Basic Microbiol 52:458–466. doi:10.1002/jobm.201100295

    Article  PubMed  CAS  Google Scholar 

  • Shah S, Prabhune A (2007) Purification by silica gel chromatography using dialysis tubing and characterization of sophorolipids produced from Candida bombicola grown on glucose and arachidonic acid. Biotechnol Lett 29:267–272. doi:10.1007/s10529-006-9221-5

    Article  CAS  PubMed  Google Scholar 

  • Shah V, Doncel GF, Seyoum T, Eaton KM, Zalenskaya I, Hagver R, Azim A, Gross R (2005) Sophorolipids, microbial glycolipids with anti-human immunodeficiency vírus and sperm-immobilizing activities. Antimicrob Agents Chemother 49:4093–4100. doi:10.1128/aac.49.10.4093-4100.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah V, Jurjevic M, Badia D (2007) Utilization of restaurant waste oil as a precursor for sophorolipid production. Biotechnol Prog 23:512–515. doi:10.1021/bp0602909

    Article  CAS  PubMed  Google Scholar 

  • Shao L, Song X, Ma X, Li H, Qu Y (2012) Bioactivities of sophorolipid with different structures against human esophageal cancer cells. J Surg Res 173:286–291. doi:10.1016/j.jss.2010.09.013

    Article  CAS  PubMed  Google Scholar 

  • Shao Z (2011) Trehalolipids. In: Soberón-Chávez G (ed) Biosurfactants, microbiology monographs 20. Springer-Verlag, Berlin, pp. 121–149. doi:10.1007/978-3-642-14490-5_5

    Google Scholar 

  • Shin JD, Kim YB, Lee HB, Choi SW, Kim EK (2008) Characteristics of sophorolipid depended on substrates. J Biotechnol 136:S504. doi:10.1016/j.jbiotec.2008.07.1182

    Article  Google Scholar 

  • Shin JD, Lee J, Kim YB, Han I-S, Kim E-K (2010) Production and characterization of methyl ester sophorolipids with 22-carbon-fatty acids. Bioresour Technol 101:3170–3174. doi:10.1016/j.biortech.2009.12.019

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Cameotra SS (2014) Influence of microbial and synthetic surfactant on the biodegradation of atrazine. Environ Sci Pollut Res 21:2088–2097. doi:10.1007/s11356-013-2127-6

    Article  CAS  Google Scholar 

  • Soberón-Chávez G, Maier RM (2011) Biosurfactants: a general overview. In: Soberón-Chávez G (ed) Biosurfactants, microbiology monographs 20. Springer-Verlag, Berlin, pp. 1–11

    Google Scholar 

  • Soberón-Chavez G, Lépine F, Déziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68:718–725. doi:10.1007/s00253-005-0150-3

    Article  PubMed  CAS  Google Scholar 

  • Solaiman DKY, Ashby RD, Zerkowski JA, Foglia TA (2007) Simplified soy molasses-based medium for reduced-cost production of sophorolipids by Candida bombicola. Biotechnol Lett 29:1341–1347. doi:10.1007/s10529-007-9407-5

    Article  CAS  PubMed  Google Scholar 

  • Sponza DT, Gök O (2010) Effect of rhamnolipid on the aerobic removal of polyaromatic hydrocarbons (PAHs) and COD components from petrochemical wastewater. Bioresour Technol 101:914–924. doi:10.1016/j.biortech.2009.09.022

    Article  CAS  PubMed  Google Scholar 

  • Sudo T, Zhao X, Wakamatsu Y, Shibahara M, Nomura N, Nakahara T, Suzuki A, Kobayashi Y, Jin C, Murata T, Yokohama KK (2000) Induction of the differentiation of human HL60 promyelocytic leukemia cell line by succinoyl trehalose lipids. Cytotechnology 33:259–264. doi:10.1023/A:1008137817944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutcliffe IC (1998) Cell envelope composition and organization in the genus Rhodococcus. Anton Leeuw 74:49–58. doi:10.1023/A:1001747726820

    Article  CAS  Google Scholar 

  • Syldatk C, Lang S, Wagner F, Wray V, Witte L (1985) Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes. Z Naturforsch C 40:51–60

    CAS  PubMed  Google Scholar 

  • Takahashi M, Morita T, Fukuoka T, Kitamoto D (2012) Glycolipid biosurfactants, mannosylerythritol lipids, show antioxidant and protective effects against H(2)O(2)-induced oxidative stress in cultured human skin fibroblasts. J Oleo Sci 61:457–464. doi:10.5650/jos.61.457

    Article  CAS  PubMed  Google Scholar 

  • Tavares LF, Silva PM, Junqueira M, Mariano DC, Nogueira FC, Domont GB, Freire DM, Neves BC (2013) Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis. Appl Microbiol Biotechnol 97:1909–1921. doi:10.1007/s00253-012-4454-9

    Article  CAS  PubMed  Google Scholar 

  • Teruel JA, Ortiz A, Aranda FJ (2014) Interactions of a bacterial trehalose lipid with phosphatidylglycerol membranes at low ionic strength. Chem Phys Lipids 181:34–39. doi:10.1016/j.chemphyslip.2014.03.005

    Article  CAS  PubMed  Google Scholar 

  • Toribio J, Escalante AE, Soberon-Chavez G (2010) Rhamnolipids: production in bacteria other than Pseudomonas aeruginosa. Eur J Lipid Sci Technol 112:1082–1087. doi:10.1002/ejlt.200900256

    Article  CAS  Google Scholar 

  • Tuleva B, Christova N, Cohen R, Antonova D, Todorov T, Stoineva I (2009) Isolation and characterization of trehalose tetraester biosurfactants from soil strain Micrococcus luteus BN56. Process Biochem 44:135–141. doi:10.1016/j.procbio.2008.09.016

    Article  CAS  Google Scholar 

  • Tuleva B, Christova N, Cohen R, Stoev G, Stoineva I (2008) Production and structural elucidation of trehalose tetraesters (biosurfactants) from a novel alkanothrophic Rhodococcus wratislaviensis strain. J Appl Microbiol 104:1703–1710. doi:10.1111/j.1365-2672.2007.03680.x

    Article  CAS  PubMed  Google Scholar 

  • Uchida Y, Misawa S, Nakahara T, Tabuchi T (1989) Factors affecting the production of succinoyl trehalose lipids by Rhodococcus erythropolis SD-74 grown on n-alkanes. Agric Biol Chem 53:765–769. doi:10.1271/bbb1961.53.765

    CAS  Google Scholar 

  • Van Bogaert I, Fleurackers S, Van Kerrebroeck S, Develter D, Soetaert W (2011b) Production of new-to-nature sophorolipids by cultivating the yeast Candida bombicola on unconventional hydrophobic substrates. Biotechnol Bioeng 108:734–741. doi:10.1002/bit.23004

    Article  CAS  PubMed  Google Scholar 

  • Van Bogaert INA, Soetaert W (2011) Sophorolipids. In: Soberón-Chávez G (ed) Biosurfactants, microbiology monographs 20. Springer-Verlag, Berlin, Germany, pp. 179–210. doi:10.1007/978-3-642-14490-5_7

    Google Scholar 

  • Van Bogaert INA, Sabirova J, Develter D, Soetaert W, Vandamme EJ (2009) Knocking out the MFE-2 gene of Candida bombicola leads to improved medium-chain sophorolipid production. FEMS Yeast Res 9:610–617. doi:10.1111/j.1567-1364.2009.00501.x

    Article  CAS  PubMed  Google Scholar 

  • Van Bogaert INA, Zhang JX, Soetaert W (2011a) Microbial synthesis of sophorolipids. Process Biochem 46:821–833. doi:10.1016/j.procbio.2011.01.010

    Article  CAS  Google Scholar 

  • Varvaresou A, Iakovou K (2015) Biosurfactants in cosmetic and biopharmaceuticals. Lett Appl Microbiol 61:214–223. doi:10.1111/lam.12440

    Article  CAS  PubMed  Google Scholar 

  • Wadekar SD, Kale SB, Lali AM, Bhowmick DN, Pratap AP (2012) Jatropha oil and karanja oil as carbon sources for production of sophorolipids. Eur J Lipid Sci Technol 114:823–832. doi:10.1002/ejlt.201100282

    Article  CAS  Google Scholar 

  • Wakamatsu Y, Zhao X, Jin C, Day N, Shibahara M, Nomura N, Nakahara T, Murata T, Yokoyama KK (2001) Mannosylerythritol lipid induces characteristics of neuronal differentiation in PC12 cells through an ERK-related signal cascade. Eur J Biochem 268:374–383. doi:10.1046/j.1432-1033.2001.01887.x

    Article  CAS  PubMed  Google Scholar 

  • Welsh KJ, Hunter RL, Actor JK (2013) Trehalose 6,6′-dimycolate—a coat to regulate tuberculosis immunopathogenesis. Tuberculosis 93(S.1):S3–S9. doi:10.1016/s1472-9792(13)70003-9

    Article  CAS  PubMed  Google Scholar 

  • White DA, Hird LC, Ali ST (2013) Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. J Appl Microbiol 115:744–755

    Article  CAS  PubMed  Google Scholar 

  • Wittgens A, Tiso T, Arndt TT, Wenk P, Hemmerich J, Müller C, Wichmann R, Küpper B, Zwick M, Wilhelm S, Hausmann R, Syldatk C, Rosenau F, Blank LM (2011) Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microb Cell Factories 10:80. doi:10.1186/1475-2859-10-80

    Article  CAS  Google Scholar 

  • Worakitkanchanakul W, Imura T, Fukuoka T, Morita T, Sakai H, Abe M, Rujiravanit R, Chavadej S, Minamikawa H, Kitamoto D (2008) Aqueous-phase behaviour and vesicle formation of natural glycolipid biosurfactant, mannosylerythritol lipid-B. Colloids Surf B Biointerfaces 65:106–112. doi:10.1016/j.colsurfb.2008.03.009

    Article  CAS  PubMed  Google Scholar 

  • Wullbrandt D (1998) Biotechnische Herstellung von L-Rhamnose. Biokonversion nachwachsender Rohstoffe, Tagungsband. (Schriftenreihe Nachwachsende Rohstoffe, Band 10), LV-Druck, Landwirtschaftsverlag, MuÈnster, 164–172

  • Yakimov MM, Giuliano L, Bruni V, Scarfi S, Golyshin PN (1999) Characterization of Antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. New Microbiol 22:249–256

    CAS  PubMed  Google Scholar 

  • Yamamoto S, Morita T, Fukuoka T, Imura T, Yanagidani S, Sogabe A, Kitamoto D, Kitagawa M (2012) The moisturizing effects of glycolipid biosurfactants, mannosylerythritol lipids, on human skin. J Oleo Sci 61:407–412. doi:10.5650/jos.61.407

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Fukuoka T, Imura T, Morita T, Yanagidani S, Kitamoto D, Kitagawa M (2013) Production of a novel mannosylerythritol lipid containing a hydroxyl fatty acid from castor oil by Pseudozyma tsukubaensis. J Oleo Sci 62:381–389. doi:10.5650/jos.62.381

    Article  PubMed  Google Scholar 

  • Yan P, Lu M, Yang Q, Zhang H-L, Zhang Z-Z Chen R (2012) Oil recovery from refinery oily sludge using a rhamnolipid biosurfactant-producing Pseudomonas. Bioresource Technol 116:24–28. doi:10.1016/j.biortech.2012.04.024

    Article  CAS  Google Scholar 

  • Yan X, Sims J, Wang B, Hamann MT (2014) Marine actinomycete Streptomyces sp. ISP2-49E, a new source of rhamnolipid. Biochem Syst Ecol 55:292–295. doi:10.1016/j.bse.2014.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Zhu L, Xue C, Chen Y, Qu L, Lu W (2012) Recovery of purified lactonic sophorolipids by spontaneous crystallization during the fermentation of sugarcane molasses with Candida albicans O-13-1. Enzyme Microb Tech 51:248–353. doi:10.1016/j.enzmictec.2012.08.002

    Article  CAS  Google Scholar 

  • Yoshida S, Morita T, Shinozaki Y, Watnabe T, Sameshima-Yamashita Y, Koitabashi M, Kitamoto D, Kitamoto H (2014) Mannosylerythritol lipids secreted by phyllosphere yeast Pseudozyma antarctica is associated with its filamentous growth and propagation on plant surfaces. Appl Microbiol Biotechnol 98:6419–6429. doi:10.1007/s00253-014-5675-x

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Liu Z, Zeng G, Zhong H, Liu Y, Jiang Y, Li M, He X, He Y (2015) Characteristics of mannosylerythritol lipids and their environmental potential. Carbohydr Res 407:63–72. doi:10.1016/j.carres.2014.12.012

    Article  CAS  PubMed  Google Scholar 

  • Zaragoza A, Teruel JA, Aranda FJ, Marqués A, Espuny MJ, Manresa Á, Ortiz A (2012) Interaction of a Rhodococcus sp. trehalose lipid biosurfactant with model proteins: thermodynamic and structural changes. Langmuir 28:1381–1390. doi:10.1021/la203879t

    Article  CAS  PubMed  Google Scholar 

  • Zaragoza A, Teruel JA, Aranda FJ, Ortiz A (2013) Interaction of a trehalose lipid biosurfactant produced by Rhodococcus erythropolis 51T7 with a secretory phospholipase A2. J Colloid Interface Sci 408:132–137. doi:10.1016/j.jcis.2013.06.073

    Article  CAS  PubMed  Google Scholar 

  • Zgoła-Grześkowiak A, Kaczorek E (2011) Isolation, preconcentration and determination of rhamnolipids in aqueous samples by dispersive liquid-liquid microextraction and liquid chromatography with tandem mass spectrometry. Talanta 83:744–750. doi:10.1016/j.talanta.2010.10.037

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Fan X, Solaiman DKY, Ashby RD, Liu Z, Mukhopadhyay S, Yan R (2016) Inactivation of Escherichia coli O157:H7 in vitro and on the surface of spinach leaves by biobased antimicrobial surfatants. Food Control 60:158–165. doi:10.1016/j.foodcont.2015.07.026

    Article  CAS  Google Scholar 

  • Zhao F, Shi R, Zhao J, Li G, Bai X, Han S, ZhanG Y (2015) Heterologous production of Pseudomonas aeruginosa rhamnolipid under anaerobic conditions for microbial enhanced oil recovery. J Appl Microbiol 118:379–389. doi:10.1111/jam.12698

    Article  CAS  PubMed  Google Scholar 

  • Zhao F, Zhou J, Han S, Ma F, Zhang Y, Zhang J (2016) Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and simplifying medium for microbial enhanced oil recovery applications. World J Microbiol Biotechnol 32:54. doi:10.1007/s11274-016-2020-9

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Murata T, Ohno S, Day N, Song J, Nomura N, Nakahara T, Yokoyama KK (2001) Protein kinase C plays a critical role in mannosylerythritol lipid-induced differentiation of melanoma B16 cells. J Biol Chem 276:39903–39910. doi:10.1074/jbc.m010281200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding agencies Conselho Nacional de Desenvolvimento Científico (CNPq), Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Nicolau Paulino.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paulino, B.N., Pessôa, M.G., Mano, M.C.R. et al. Current status in biotechnological production and applications of glycolipid biosurfactants. Appl Microbiol Biotechnol 100, 10265–10293 (2016). https://doi.org/10.1007/s00253-016-7980-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7980-z

Keywords

Navigation