Skip to main content
Log in

Biological conversion of methane to chemicals and fuels: technical challenges and issues

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Methane is a promising next-generation carbon feedstock for industrial biotechnology due to its low price and huge availability. Biological conversion of methane to valuable products can mitigate methane-induced global warming as greenhouse gas. There have been challenges for the conversion of methane into various chemicals and fuels using engineered non-native hosts with synthetic methanotrophy or methanotrophs with the reconstruction of synthetic pathways for target products. Herein, we analyze the technical challenges and issues of potent methane bioconversion technology. Pros and cons of metabolic engineering of methanotrophs for methane bioconversion, and perspectives on the bioconversion of methane to chemicals and liquid fuels are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anthony C, Ghosh M (1998) The structure and function of the PQQ-containing quinoprotein dehydrogenases. Prog Biophys Mol Biol 69:1–21

    Article  CAS  PubMed  Google Scholar 

  • Baani M, Liesack W (2008) Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci U S A 105:10203–10208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC (2010) Oxidation of methane by a biological dicopper center. Nature 465:115–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett RK, Gonzalez JE, Whitaker WB, Antoniewicz MR, Papoutsakis ET (2018) Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph. Metab Eng 45:75–78

    Article  CAS  PubMed  Google Scholar 

  • Csaki R, Bodrossy L, Klem J, Murrell JC, Kovacs KL (2003) Genes involved in the copper-dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath): cloning, sequencing and mutational analysis. Microbiol-Sgm 149:1785–1795

    Article  CAS  Google Scholar 

  • Coleman WJ, Vidanes GM, Cottarel G, Muley S, Kamimura R, Javan AF, Sun J, Groban ES (2014) Biological conversion of multi-carbon compounds from methane. U.S. Patent Application No. 14/206,835

  • Comer AD, Long MR, Reed JL, Pfleger BF (2017) Flux balance analysis indicates that methane is the lowest cost feedstock for microbial cell factories. Metab Eng Commun 5:26–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Conrado RJ, Gonzalez R (2014) Envisioning the bioconversion of methane to liquid fuels. Science 343:621–623

    Article  CAS  PubMed  Google Scholar 

  • Crombie AT, Murrell JC (2014) Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature 510:148–151

    Article  CAS  PubMed  Google Scholar 

  • Crombie A, Murrell JC (2011) 8 development of a system for genetic manipulation of the facultative methanotroph Methylocella silvestris BL2. Meth Enzymol 495:119

    Article  CAS  PubMed  Google Scholar 

  • Culpepper MA, Rosenzweig AC (2014) Structure and protein–protein interactions of methanol dehydrogenase from Methylococcus capsulatus (Bath). Biochemistry (N Y) 53:6211–6219

    Article  CAS  Google Scholar 

  • Demain AL, Fang A (2000) The natural functions of secondary metabolites. In: Anonymous history of modern biotechnology I. Springer, pp 1–39

  • Demidenko A, Akberdin IR, Allemann M, Allen EE, Kalyuzhnaya MG (2017) Fatty acid biosynthesis pathways in Methylomicrobium buryatense 5G (B1). Front Microbiol 7:2167

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong T, Fei Q, Genelot M, Smith H, Laurens LM, Watson MJ, Pienkos PT (2017) A novel integrated biorefinery process for diesel fuel blendstock production using lipids from the methanotroph, Methylomicrobium buryatense. Energy Convers Manag 140:62–70

    Article  CAS  Google Scholar 

  • DiCosimo DJ, Koffas M, Odom JM, Wang S (2004) Production of cyclic terpenoids. U.S. Patent No. 6,818,424

  • Fei Q, Guarnieri MT, Tao L, Laurens LM, Dowe N, Pienkos PT (2014) Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 32:596–614

    Article  CAS  PubMed  Google Scholar 

  • Haynes CA, Gonzalez R (2014) Rethinking biological activation of methane and conversion to liquid fuels. Nat Chem Biol 10:331–339

    Article  CAS  PubMed  Google Scholar 

  • Henard CA, Smith H, Dowe N, Kalyuzhnaya MG, Pienkos PT, Guarnieri MT (2016) Bioconversion of methane to lactate by an obligate methanotrophic bacterium. Sci Rep 6:21585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hur DH, Na J, Lee EY (2017a) Highly efficient bioconversion of methane to methanol using a novel type I Methylomonas sp. DH-1 newly isolated from brewery waste sludge. J Chem Technol Biotechnol 92:311–318

    Article  CAS  Google Scholar 

  • Hur DH, Nguyen TT, Kim D, Lee EY (2017b) Selective bio-oxidation of propane to acetone using methane-oxidizing Methylomonas sp. DH-1. J Ind Microbiol Biotechnol:1–9

  • Hwang IY, Hur DH, Lee JH, Park C, Chang IS, Lee JW, Lee EY (2015) Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst. J Microbiol Biotechnol 25:375–380

    Article  CAS  PubMed  Google Scholar 

  • Hwang IY, Lee SH, Choi YS, Park SJ, Na JG, Chang IS, Kim C, Kim HC, Kim YH, Lee JW (2014) Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries. J Microbiol Biotechnol 24:1597–1605

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa M, Tanaka Y, Suzuki R, Kimura K, Tanaka K, Kamiya K, Ito H, Kato S, Kamachi T, Hori K, Nakanishi S (2017) Real-time monitoring of intracellular redox changes in Methylococcus capsulatus (Bath) for efficient bioconversion of methane to methanol. Bioresour Technol 241:1157–1161

    Article  CAS  PubMed  Google Scholar 

  • Kalyuzhnaya MG, Puri AW, Lidstrom ME (2015) Metabolic engineering in methanotrophic bacteria. Metab Eng 29:142–152

    Article  CAS  PubMed  Google Scholar 

  • Kang TJ, Lee EY (2016) Metabolic versatility of microbial methane oxidation for biocatalytic methane conversion. J Ind Eng Chem 35:8–13

    Article  CAS  Google Scholar 

  • Kotani T, Kawashima Y, Yurimoto H, Kato N, Sakai Y (2006) Gene structure and regulation of alkane monooxygenases in propane-utilizing Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7. J Biosci Bioeng 102:184–192

    Article  CAS  PubMed  Google Scholar 

  • Kotani T, Yurimoto H, Kato N, Sakai Y (2007) Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5. J Bacteriol 189:886–893

    Article  CAS  PubMed  Google Scholar 

  • Lamarche MG, Perreault J, Migues C (2016) Genetically engineered c1-utilizing microorganisms and processes for their production and use. WO/2016/165025

  • Lee J, Yasin M, Park S, Chang IS, Ha K, Lee EY, Lee J, Kim C (2015) Gas-liquid mass transfer coefficient of methane in bubble column reactor. Korean J Chem Eng 32:1060–1063

    Article  CAS  Google Scholar 

  • Lee OK, Hur DH, Nguyen DTN, Lee EY (2016) Metabolic engineering of methanotrophs and its application to production of chemicals and biofuels from methane. Biofuel Bioprod Bior 10:848–863

    Article  CAS  Google Scholar 

  • Leßmeier L, Pfeifenschneider J, Carnicer M, Heux S, Portais J, Wendisch VF (2015) Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Appl Microbiol Biotechnol 99:10163–10176

    Article  PubMed  Google Scholar 

  • Leonard E, Minshull J, Ness JE, Purcell TJ (2014) Compositions and methods for biological production of isoprene. U.S. Patent Application No. 14/773,118

  • Lloyd JS, De Marco P, Dalton H, Murrell JC (1999a) Heterologous expression of soluble methane monooxygenase genes in methanotrophs containing only particulate methane monooxygenase. Arch Microbiol 171:364–370

    Article  CAS  PubMed  Google Scholar 

  • Lloyd JS, Finch R, Dalton H, Murrell JC (1999b) Homologous expression of soluble methane monooxygenase genes in Methylosinus trichosporium OB3b. Microbiology 145:461–470

    Article  CAS  PubMed  Google Scholar 

  • Marx CJ, Lidstrom ME (2002) Broad-host-range cre-lox system for antibiotic marker recycling in gram-negative bacteria. BioTechniques 33:1062–1067

    CAS  PubMed  Google Scholar 

  • McKinlay JB, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76:727–740

    Article  CAS  PubMed  Google Scholar 

  • Meinhold P, Peters MW, Chen MM, Takahashi K, Arnold FH (2005) Direct conversion of ethane to ethanol by engineered cytochrome P450 BM3. Chembiochem 6:1765–1768

    Article  CAS  PubMed  Google Scholar 

  • Muller JE, Meyer F, Litsanov B, Kiefer P, Potthoff E, Heux S, Quax WJ, Wendisch VF, Brautaset T, Portais J (2015) Engineering Escherichia coli for methanol conversion. Metab Eng 28:190–201

    Article  CAS  PubMed  Google Scholar 

  • Mustakhimov II, But SY, Reshetnikov AS, Khmelenina VN, Trotsenko YA (2016) Homo and heterologous reporter proteins for evaluation of promoter activity in Methylomicrobium alcaliphilum 20Z. Appl Biochem Microbiol 52:263–268

  • Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY (2013) Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol 31:170–174

    Article  CAS  PubMed  Google Scholar 

  • Ng C, Jung M, Lee J, Oh M (2012) Production of 2, 3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb Cell Factories 11:68

    Article  CAS  Google Scholar 

  • Nguyen HH, Chan S (2003) Protein and nucleic acid expression systems. US20030032141 A1

  • Nguyen AD, Hwang IY, Chan JY, Lee EY (2016) Reconstruction of methanol and formate metabolic pathway in non-native host for biosynthesis of chemicals and biofuels. Biotechnol Bioprocess Eng 21:477–482

    Article  CAS  Google Scholar 

  • Ojala DS, Beck DA, Kalyuzhnaya MG (2011) 7 genetic systems for moderately halo (alkali) philic bacteria of the genus Methylomicrobium. Meth Enzymol 495:99

    Article  PubMed  Google Scholar 

  • Petersen LAH, Villadsen J, Jørgensen SB, Gernaey KV (2017) Mixing and mass transfer in pilot scale U-loop bioreactor. Biotechnol Bioeng 114:344–354

    Article  CAS  PubMed  Google Scholar 

  • Puehringer S, Metlitzky M, Schwarzenbacher R (2008) The pyrroloquinoline quinone biosynthesis pathway revisited: a structural approach. BMC Biochem 9:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Puri AW, Owen S, Chu F, Chavkin T, Beck DA, Kalyuzhnaya MG, Lidstrom ME (2015) Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense. Appl Environ Microbiol 81:1775–1781

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheller S, Goenrich M, Boecher R, Thauer RK, Jaun B (2010) The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465:606–608

    Article  CAS  PubMed  Google Scholar 

  • Sharpe PL, DiCosimo D, Bosak MD, Knoke K, Tao L, Cheng Q, Ye RW (2007) Use of transposon promoter-probe vectors in the metabolic engineering of the obligate methanotroph Methylomonas sp. strain 16a for enhanced C40 carotenoid synthesis. Appl Environ Microbiol 73:1721–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel JB, Smith AL, Poust S, Wargacki AJ, Bar-Even A, Louw C, Shen BW, Eiben CB, Tran HM, Noor E (2015) Computational protein design enables a novel one-carbon assimilation pathway. Proc Natl Acad Sci U S A 112:3704–3709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soo VW, McAnulty MJ, Tripathi A, Zhu F, Zhang L, Hatzakis E, Smith PB, Agrawal S, Nazem-Bokaee H, Gopalakrishnan S (2016) Reversing methanogenesis to capture methane for liquid biofuel precursors. Microb Cell Factories 15:11

    Article  Google Scholar 

  • Stephens GM, Dalton H (1986) The role of the terminal and subterminal oxidation pathways in propane metabolism by bacteria. Microbiology 132:2453–2462

    Article  CAS  Google Scholar 

  • Strong PJ, Xie S, Clarke WP (2015) Methane as a resource: can the methanotrophs add value? Environ Sci Technol 49:4001–4018

    Article  CAS  PubMed  Google Scholar 

  • Subbian E (2015a) Production of lactic acid from organic waste or biogas or methane using recombinant methanotrophic bacteria. U.S. Patent Application No. 15/303,188

  • Subbian E (2015b) Production of succinic acid from organic waste or biogas or methane using recombinant methanotrophic bacterium. U.S. Patent Application No. 15/303,184

  • Tao L, Sedkova N, Yao H, Ye RW, Sharpe PL, Cheng Q (2007) Expression of bacterial hemoglobin genes to improve astaxanthin production in a methanotrophic bacterium Methylomonas sp. Appl Microbiol Biotechnol 74:625–633

    Article  CAS  PubMed  Google Scholar 

  • Thauer RK (2011) Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Curr Opin Microbiol 14:292–299

    Article  CAS  PubMed  Google Scholar 

  • Theisen AR, Ali MH, Radajewski S, Dumont MG, Dunfield PF, McDonald IR, Dedysh SN, Miguez CB, Murrell JC (2005) Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol 58:682–692

    Article  CAS  PubMed  Google Scholar 

  • Van Ophem PW, Van Beeumen J, Duine JA (1993) Nicotinoprotein [NAD (P)-containing] alcohol/aldehyde oxidoreductases. Purification and characterization of a novel type from Amycolatopsis methanolica. Eur J Biochem 212:819–826

    Article  PubMed  Google Scholar 

  • Vanderberg LA, Perry JJ (1994) Dehalogenation by Mycobacterium vaccae JOB-5: role of the propane monooxygenase. Can J Microbiol 40:169–172

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang Y, Liu J, Li Q, Zhang Z, Zheng P, Lu F, Sun J (2017) Biological conversion of methanol by evolved Escherichia coli carrying a linear methanol assimilation pathway. Bioresour Bioprocess 4:41

    Article  Google Scholar 

  • Welander PV, Summons RE (2012) Discovery, taxonomic distribution, and phenotypic characterization of a gene required for 3-methylhopanoid production. Proc Natl Acad Sci U S A 109:12905–12910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitaker WB, Jones JA, Bennett RK, Gonzalez JE, Vernacchio VR, Collins SM, Palmer MA, Schmidt S, Antoniewicz MR, Koffas MA (2017) Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. Metab Eng 39:49–59

    Article  CAS  PubMed  Google Scholar 

  • Whitaker WB, Sandoval NR, Bennett RK, Fast AG, Papoutsakis ET (2015) Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization. Curr Opin Biotechnol 33:165–175

    Article  CAS  PubMed  Google Scholar 

  • Witthoff S, Schmitz K, Niedenfhr S, Nh K, Noack S, Bott M, Marienhagen J (2015) Metabolic engineering of Corynebacterium glutamicum for methanol metabolism. Appl Environ Microbiol 81:2215–2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Chu H, Gao C, Tao F, Zhou Z, Li K, Li L, Ma C, Xu P (2014) Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2, 3-butanediol. Metab Eng 23:22–33

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Chu F, Puri AW, Fu Y, Lidstrom ME (2016) Electroporation-based genetic manipulation in type I methanotrophs. Appl Environ Microbiol 82:2062–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Zhong G, Lin J, Mao D, Wei D (2010) Pyrroloquinoline quinone biosynthesis in Escherichia coli through expression of the Gluconobacter oxydans pqqABCDE gene cluster. J Ind Microbiol Biotechnol 37:575–580

    Article  CAS  PubMed  Google Scholar 

  • Ye RW, Kelly K (2012) Construction of carotenoid biosynthetic pathways through chromosomal integration in methane-utilizing bacterium Methylomonas sp. strain 16a. Microbial Carotenoids from Bacteria and Microalgae: Methods and Protocols:185–195

  • Ye RW, Yao H, Stead K, Wang T, Tao L, Cheng Q, Sharpe PL, Suh W, Nagel E, Arcilla D, Dragotta D, Miller ES (2007) Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp. strain 16a. J Ind Microbiol Biotechnol 34:289–299

  • Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R (2011) Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol. Nat Chem Biol 7:445–452

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Ramsay JA, Ramsay BA (2006) On-line estimation of dissolved methane concentration during methanotrophic fermentations. Biotechnol Bioeng 95:788–793

    Article  CAS  PubMed  Google Scholar 

  • Zilly FE, Acevedo JP, Augustyniak W, Deege A, Husig UW, Reetz MT (2011) Tuning a P450 enzyme for methane oxidation. Angew Chem 123:2772–2776

    Article  Google Scholar 

Download references

Funding

This research was supported by C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2015M3D3A1A01064882).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Yeol Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, I.Y., Nguyen, A.D., Nguyen, T.T. et al. Biological conversion of methane to chemicals and fuels: technical challenges and issues. Appl Microbiol Biotechnol 102, 3071–3080 (2018). https://doi.org/10.1007/s00253-018-8842-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-8842-7

Keywords

Navigation