Skip to main content
Log in

Moisture content of natural stone: static and dynamic equilibrium with atmospheric humidity

  • Original Article
  • Published:
Environmental Geology

Abstract

Among hygric properties of stone material, the sorption behaviour is of essential importance because of the permanence of the processes involved. New results from static sorption experiments performed by standard techniques and by a new tool are reported for six different building stones. Furthermore, an example of dynamic sorption behaviour under continuously changing humidity is presented. For the static equilibrium sorption measurements a close relation to the stone type, its pore properties, such as specific inner surface, pore volume, pore size distribution as well as capillary water uptake and water saturation, is drawn. The comparison of the different data allows us to retrieve correlations between material features that are crucial for weathering processes. The sorption–desorption processes respond spontaneously on even small humidity changes as shown by the dynamic sorption experiment. A permanent ‘breathing’-process of the material is imposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arnold A(1992) Salze: Lästige weiße Ausblühungen oder Hauptschadensursache? In: Snethlage R (ed) Jahresberichte Steinzerfall. Steinkonservierung 1990 1:1–10

    Google Scholar 

  • Arnold A, Zehnder K, Küng A, Emmenegger O (1991) Wandmalereizerfall, Salze und Raumklima in der Klosterkirche von Müstair. Zeitschrift Kunsttechnologie Konservierung 5/1:171–200

    Google Scholar 

  • Bargossi GM, Mair V, Morelli C, Sapelza A (1999) The Atesino volcanic district (Bolzano-Trento area): a general outline. Field trip Guide Book, pp 21–25

  • Bell LN, Labuza TP (2000) Moisture sorption: practical aspects of isotherm measurement and use, 2nd edn. American Association of Cereal Chemists

    Google Scholar 

  • Brandes C, Stadelbauer E (1992) Capillary water absorption of painted stone. In: Delgado-Rodrigues J, Henriques F, Jeremias FT (eds) VIIth International Congress on Deterioration and Conservation of Stone, Lisbon, vol 2, pp 591–600

  • Brüggerhoff S, Wange G, Morat P, Le Mouël JL Perrier F (2001) First results of using mass and temperature measurements to study the water flow at the rock–atmosphere interface. J Cultural Herit 2:117–132

    Article  Google Scholar 

  • Buggisch W (1978) Die Grödner Schichten (Perm, Südalpen): Sedimentolgische und geochemische Untersuchungen zur Unterscheidung mariner und kontinentaler Sedimente. Geol Rundsch 1:149–180

    Google Scholar 

  • Camuffo D (1998) Microclimate for cultural heritage. Elsevier, Padova

  • Chkirda S, Kintrup H, Müller-Rochholz J (1999) Sorptionsfeuchtemessungen von Baumberger Kalksandstein mit kapazitiven Feuchtefühlern, Berichtsband 69, 10. Feuchtetag, Berlin p 18

  • Franzen C, Mirwald PW (2000) Grödner Sandstone, a historical building material in south Tyrol/Italy: the problem of large variability of stone properties for monument conservation. In: Fassina V (ed) IXth International Congress on Deterioration and Conservation of Stone, Venice, vol 1, pp 25–29

  • Griesser UJ, Dillenz J (2002) Neuartiges, vollautomatisches Feuchtesorptionsprüfgerät mit hohem Probendurchsatz, 9. Feuchtetag, Weimar, pp 85–93

  • Grimm WD (1990) Bildatlas wichtiger Denkmalgesteine in Deutschland. Bayerisches Landesamt für Denkmalpflege, München, Ah 50

  • Kiessl K (1983) Kapillarer und dampfförmiger Feuchtetransport in mehrschichtigen Bauteilen Rechnerische Erfassung und bauphysikalische Anwendung. Fachbereich Bauwesen, Hochschule Essen

  • Klopfer H (1997) Feuchte. In: Lehrbuch der Bauphysik, 4th edn. Fischer HM, Jenisch R, Klopfer H, Freymuth H, Richter E, Petzhold K, (eds) Teubner, Stuttgart

  • Kraus K (1985) Experimente zur immissionsbedingten Verwitterung der Naturbausteine des Kölner Doms im Vergleich zu deren Verhalten am Bauwerk. Universität Köln

  • Lide DR (1992) Handbook of chemistry and physics. CRC Press, New York, pp 15–20

  • Meng B (1993) Charakterisierung der Porenstruktur im Hinblick auf die Interpretation von Feuchtetransportvorgängen. RWTH Aachen

  • Metz F (1992) Zur Charakterisierung von Porenraum und ausgewählten Gebrauchseigenschaften verschiedener Natursteine. Marburg

  • Poschlod K (1990) Das Wasser im Porenraum kristalliner Naturwerksteine Münchener Geowiss. Abh. B 7

  • Snethlage R (1984) Steinkonservierung. Bayerisches Landesamt für Denkmalpflege, München, Ah 22

  • Thomachot C, Jeannette D (2002) Evolution of the petrophysical properties of two types of Alsatian sandstone subjected to simulated freeze–thaw conditions, In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies. Geol Soc Lond Spec Publ 205:19–32

    Google Scholar 

  • Tournier B, Jeannette D, Destrigenville C (2000) Stone drying: an approach of the effective evaporation surface area. In: Fassina V (ed) IXth International Congress on Deterioration and Conservation of Stone, Venice, vol 1, pp 629–635

  • Visser H, Mirwald PW (1998) Baumberger Kalksandstein – Materialeigenschaften und Schadenspotential In: Niedersächsisches Landesamt für Denkmalpflege (ed) Die Steinskulpturen des Jagdschlosses Clemenswerth/Emsland, DBU, pp 26–45

  • Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegrad 46:343–368

    Article  CAS  Google Scholar 

  • Weiss G (1992) Die Eis- und Salzkristallisation im Porenraum von Sandsteinen und ihre Auswirkungen auf das Gefüge unter besonderer Berücksichtigung gesteinsspezifischer Parameter. Münchner Geowiss. Abh. B 9

  • Zehnder K, Arnold A (1989) Crystal growth in salt efflorescence. J Crystal Growth 97:513–521

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P. Schneider is thanked for carrying out the long-term measurement on BaS. For help with the SPS11 analysis, we would like to thank U. Griesser. The critical review of K. Zehnder and an anonymous reviewer is gratefully acknowledged. Thanks to S. Stadler for improving the language of the manuscript. The study was partially funded by a project within the EU-InterregII programme between Italy and Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Franzen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franzen, C., Mirwald, P.W. Moisture content of natural stone: static and dynamic equilibrium with atmospheric humidity. Env Geol 46, 391–401 (2004). https://doi.org/10.1007/s00254-004-1040-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-004-1040-1

Keywords

Navigation