Skip to main content
Log in

Geochemical characteristics of water and sediment from the Dal Lake, Kashmir Himalaya: constraints on weathering and anthropogenic activity

  • Original Article
  • Published:
Environmental Geology

Abstract

Two hundred and forty water samples (in four seasons) and seventeen sediment samples have been analyzed to monitor the natural and anthropogenic influences on the water and sediment chemistry of the Dal Lake, Kashmir Himalaya. The scatter diagrams [(Ca+Mg)/total cations (TZ+), (Ca+Mg)/HCO3, (Ca+Mg)/(HCO3+SO4), (Na+K)/TZ+; (Ca+Mg)/(Na+K)] and the geological map of the study area suggest predominance of carbonate and silicate weathering. Lower pH and high total dissolved solids, electrical conductivity and \( {\text{NO}}^{ - }_{{\text{3}}} \) values in the Gagribal basin and in some patches of other basins reflect anthropogenic inputs in the form of sewage from surrounding population, houseboats, hotels, etc. The Dal Lake is characterized by high chemical index of alteration (CIA: 87–95), reflecting extreme weathering of the catchment area. Relative to the average carbonates, the lakebed sediments are enriched in Al, Ti, Zn, Cu and Co and depleted in Ni and Mn. Compared to the post-Archean Shale the sediments have higher Al, Zn and Cu contents and lower Ni and Co. There are distinct positive anomalies of Al, Mn, Zn and Cu and negative anomalies of Ni and Pb with respect to the upper continental crust. Geoaccumulation index (I geo) and the US Environmental Protection Agency sediment quality standards indicate that the Gagribal basin and some patches of the Nagin basin are polluted with respect to Zn, Cu and Pb. These data suggest that the Dal Lake is characterized by differential natural and anthropogenic influences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • APHA, AWWA, WPCF (1996) Standard methods for the examination of water and waste. American Public Health Association, Washington DC

  • Baudo R, Geisy JP, Muntau H (1990) Sediments-chemistry and toxicity of in-place pollutants. Lewis Publishers Ann Arbor, pp 1–3

    Google Scholar 

  • Bhat DK (1989) Geology of Karewa basin, Kashmir. Geol Sur India Records p 122

  • Calmano W, Ahlf W, Förstner U (1996) Sediment quality assessment: chemical and biological approaches In: Calmano W, Förstner U (eds) Sediments and toxic substances. Springer Berlin, Heidelberg, New York, pp 1–35

    Google Scholar 

  • Chapman PM (1986) Sediment quality criteria from the sediment quality triad. An example. Env Tox Chem 5:957–964

    Article  Google Scholar 

  • Chakrapani GJ (2002) Water and sediment geochemistry of major Kumaon Himalayan Lakes India. Env Geol 43:99–107

    Article  Google Scholar 

  • Chebotarev II (1955) Metamorphism of natural waters in the crust of weathering. Geochim Cosmochim Acta 8:22–48

    Article  Google Scholar 

  • Christensen VG, Juracek KE (2001) Variability of metals in reservoir sediment from two adjacent basins in the central Great Plains. Env Geol 40(4–5):470–481

    Article  Google Scholar 

  • Datta NK (1983) Geology, evolution and hydrocarbon prospects of Kashmir Valley. Pet Asia J 171–177

  • Dessert C, Dupre B, Francois LM, Schott J, Gaillardet J, Chakrapani G, Bajpai S (2001) Erosion of Deccan Traps determined by river geochemistry: impact on the global climate and Sr/Sr ratio of seawater. Earth Planet Sci Lett 188:459–474

    Article  Google Scholar 

  • Dunne T (1978) Rates of chemical denudation of silicate rocks in tropical catchments. Nature 274:244–246

    Article  Google Scholar 

  • ENEX (1978) Study of the pollution of Dal Lake Srinagar Kashmir. ENEX Consortium, New Zealand

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Fernex F, Valle PZ, Sanchez RH, Michand F, Parron C, Dalmasso J, Genevieve BF, Manuel GA (2001) Sedimentation rates in Lake Chapala (Western Mexico): possible active tectonic control. Chem Geol 177:213–228

    Article  Google Scholar 

  • Förstner U (1989) Contaminated sediments lecture notes in earth sciences. Springer, Berlin Heidelberg, NewYork

    Google Scholar 

  • Förstner U, Müller G (1973) Heavy metals accumulations in river sediments: a response to environmental pollution. Geoforum 14:53–71

    Article  Google Scholar 

  • Förstner U, Wittmann GTW (1983) Metal pollution in the aquatic environment. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gibbs RJ (1970) Mechanism controlling world water chemistry. Science 170:1088–1090

    Article  Google Scholar 

  • Gupta LP, Subramanian V (1998) Geochemical factors controlling the chemical nature of water and sediments in the Gomti river. India Env Geol 36 (1–2):102–108

    Article  Google Scholar 

  • Holland HD (1978) The chemistry of the atmosphere and oceans. Wiley, New York

    Google Scholar 

  • Ingersoll CG, Haverland PS, Brunson EL, Canfield TJ, Dwyer FJ, Henke CE, Kemble NE, Mount DR, Fox RG (1996) Calculation and evaluation of sediment effect concentrations for the amphipod Hyalella azteca and the midge Chironomus riparius. J Great Lakes Res 22(3):602–623

    Article  Google Scholar 

  • Ingri J, Widerlund A (1994) Uptake of earth and alkaline earth elements on suspended iron and manganese in the Kalix River northern Sweden. Geochim Cosmochim Acta 58:5433–5442

    Article  Google Scholar 

  • Irabien MJ, Velasco F (1999) Heavy metals in Oka river sediments (Urdaibai National Biosphere Reserve northern Spain): lithogenic and anthropogenic effects. Env Geol 37 (1–2):54–63

    Article  Google Scholar 

  • Jeelani G (2005) Chemical quality of the spring waters of Anantnag, Kashmir. J Geol Soc Ind 66:453–462

    Google Scholar 

  • Johansson K, Iverfeldt A (1994) The relation between mercury content in the soil and the transport of mercury from small catchments in Sweden. In: Watras CJ, Huckabee JW (eds) Mercury pollution, integration and synthesis. Lewis, Boca Raton pp 323–328

    Google Scholar 

  • Koussouris T, Diapoulis A (1989) Lake Mikri Prespa. Ecological changes from natural and anthropogenic causes. Toxicol Environ Chem 20:49–52

    Article  Google Scholar 

  • Koussouris T, Diapoulis A, Balapoulos E (1987) Limnological situations in two shallow Greek lakes. Geojournal 14:377–379

    Article  Google Scholar 

  • Krishnaswami S, Singh SK (1998) Silicate and carbonate weathering in the drainage basins of the Ganga–Ghaghra–Indus head waters: contributions to major ion and Sr isotope geochemistry. Pr Ind Acad Sci (Earth Planet Sci) 107(4):283–291

    Google Scholar 

  • McLennan SM (1993) Weathering and Global denudation. J Geol 101:295–303

    Article  Google Scholar 

  • Mclennan SM., Taylor SR (1991) Sedimentary rocks and crustal evolution; tectonic setting and secular trends. J Geol 99:1–21

    Article  Google Scholar 

  • Moore JW, Ramamoorthy S (1984) Heavy metals in natural waters: applied monitoring and impact assessment. Springer, New York, Berlin, Heidelberg pp 268

    Google Scholar 

  • Müller G (1979) Schwermetalle in den sediment des Rheins-Vernderungen seit 1971. Umschau 79(24):778–783

    Google Scholar 

  • Nag JK, Das A K (1993) Trace metal levels in drinking water scenario of Hooghly district. Ind J Environ Protect 13:20–22

    Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Article  Google Scholar 

  • Raymahashay BC (1986) Geochemistry of bicarbonate in river water. J Geol Soc Ind 27(1):114–118

    Google Scholar 

  • Sarin M M, Krishnaswami S (1984) Major ion chemistry of the Ganga-Brahamputra river systems India. Nature 312:538–541

    Article  Google Scholar 

  • Sarin MM, Krishnaswami S, Dilli K, Somayajulu BLK, Moore WS (1989) Major ion chemistry of Ganga–Brahamputra river systems: weathering processes and fluxes to the Bay of Bengal. Geochem Cosmochim Acta 54:997–1009

    Article  Google Scholar 

  • Shapiro L, Brannock WW (1962) Rapid analyses of silicate, carbonate and phosphate rocks. USGS Bull 1144A:A1−A32

    Google Scholar 

  • Singh AK, Hasnain I (1999) Environmental geochemistry of Damodar River basin, east coast of India. Env Geol 37 (1–2):124–136

    Article  Google Scholar 

  • Skoulikidis NT, Bertahas I, Koussouris T (1998) The environmental state of freshwater resources in Greece (rivers and lakes). Env Geol 36(1–2):1–17

    Article  Google Scholar 

  • Sujatha SD, Sathyanarayanan S, Satish PN, Nagaraju D (2001) A sewage and sludge treated lake and its impact on the environment Mysore India. Env Geol 40:1209–1213

    Article  Google Scholar 

  • Taylor SR, Mclennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford pp 312

    Google Scholar 

  • Thuy HTT, Tobschall HJ, An PV (2000) Trace element distributions in aquatic sediments of Danang-Hoian area, Vietnam. Env Geol 39(7):733–740

    Article  Google Scholar 

  • Turekian SR, Wedepohl KH (1961) Distribution of the elements in some major units of the Earths crust. Geol Soc Amer Bull 72:175–192

    Article  Google Scholar 

  • Trisal CL (1987) Ecology and conservation of Dal Lake Kashmir. Water Resources Dev 3:44–54

    Article  Google Scholar 

  • Trivedi RK, Goel PK (1984) Chemical and biological methods for water pollution studies. Env Publ Karad, India pp 215

    Google Scholar 

  • USEPA (1997) The incidence and severity of sediment contamination in surface waters of the United States. National sediment quality survey US Environmental Agency Report 1:823-R-97–006

  • Varadan VKS (1977) Geology and mineral resources of the state of India Part X Jammu and Kashmir state. Geol Sur Ind 30:1–71

    Google Scholar 

  • Wadia DN (1971) Geology of India. Tata McGraw Hill, New Delhi pp 344

    Google Scholar 

  • WHO (1993) International standards for drinking water. World Health Organization, Geneva

  • Zutshi DP, Vass KK (1978) Limnological studies on Dal Lake Srinagar: chemical features. Ind J Ecol 5:90–97

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Chairman, Dept. of Geology, AMU, Aligarh and Director CORD, University of Kashmir for providing laboratory facilities. The anonymous reviewers are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Jeelani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeelani, G., Shah, A.Q. Geochemical characteristics of water and sediment from the Dal Lake, Kashmir Himalaya: constraints on weathering and anthropogenic activity. Environ Geol 50, 12–23 (2006). https://doi.org/10.1007/s00254-005-0168-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-005-0168-y

Keywords

Navigation