Skip to main content
Log in

Red palaeosols sequence in a semiarid Mediterranean environment region

  • Original Article
  • Published:
Environmental Geology

Abstract

In this work we study one of the most palaeopedological sequence formed in Central Spain, which is located on the Pliocene–Pleistocene erosional surface in the Madrid Basin. We also analyse its relationship to erosive and sedimentary Pleistocene events in order to obtain new data for a correct interpretation of the origin and evolution of forms at the top of tabular lands in this site. The geomorphic features and the properties of a sequence of very red palaeosols that developed on this old surface can help us in the understanding of the palaeoclimatic evolution of Central Spain in a Mediterranean climate. They were examined to identify pedologic and climatic changes during the Quaternary. The soil sequence comprises intercalated palaeoargillic and palaeopetrocalcic horizons. The clay minerals are mainly illite, kaolinite, smectite and sepiolite. The alternation of argillic and calcic horizons, limestone debris (cryoclastic colluvions) and aeolian sands suggests succeeding periods of phytostability and phytoinstability (biostasis/rhexistasis). Argillation, rubification and calcium carbonate accumulation were repeated throughout the Pleistocene and it is hypothesised that climatic conditions during numerous stages of this period were not very different from the present conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Braithwaite C (1983) Calcrete and other soils in Quaternary limestones: structures, processes and applications. J Geol Soc Lond 140:351–363

    Google Scholar 

  • Bronger A, Bruhn-Lobin N (1997) Paleopedology of Terrae rossae-Rhodoxeralfs from Quaternary calcarenites in NW Morocco. Catena 28:279–295

    Article  Google Scholar 

  • Bronger A, Ensling J, Gütlich P, Spiering H (1983) Rubification of terrae rossa in Slovakia: a Mossbauer effect study. Clays Clay Miner 31:269–276

    Article  Google Scholar 

  • Coudé-Gaussen G, Olive P, Rognon P (1983) Datation de dépôts loessiques et variations climatiques à la bordure nord du Sahara algéro-tunisien. Rev Geol Dyn El Géog Phys 24:61–73

    Google Scholar 

  • Coudé-Gaussen G, Rognon P, Rapp A, Nihlén T (1987) Dating of peridesert loess in Matmata south Tunisia, by radiocarbon and thermoluminescence methods. Z Geomorph 31(2):129–144

    Google Scholar 

  • Durn G, Ottner F, Slovenec D (1999) Mineralogical and geochemical indicators of the polygenetic nature of terra rossa in Istria, Croatia. Geoderma 91:125–150

    Article  Google Scholar 

  • FAO-UNESCO (1977) Guidelines for soils profile description. Rome

  • FAO-UNESCO (1990) Soil map of the world. Revised legend. Soils Bulletin 60. Rome

  • Fedoroff N (1997) Clay illuviation in Red Mediterranean soils. Catena 28(3–4):171–184

    Article  Google Scholar 

  • Fedoroff N, Courty MA (1993) Relationship between calcite accretion and other soil forming processes in red Mediterranean soils. In: Abstract of the 2nd international meeting on red Mediterranean soils, Adana, Turkey, pp 36–37

  • García R (2004) Loess y otras acumulaciones en el valle medio del río Tajo y en sus páramos calizos: sector Aranjuez-Tarancón. PhD thesis, UAM, 963 pp

  • García R, Vigil R, González JA (1998) Periglacial loess fields in the Tajo River, Spain. In: Abstract of the 17th general meeting of the international mineralogical association, Toronto, Canada, pp 59–60

  • García del Cura OS, González JA (1991) Los carbonatos biogénicos de los episodios terminales del relleno neógeno de la Cuenca de Madrid. 1er. Congreso del Grupo español del Terciario, Vich, Gerona, Spain, pp 136–139

    Google Scholar 

  • García del Cura MA, González JA, Ordoñez S (1997) Geología y Geomorfología de las Lagunas de Ruidera. In: García V (ed) Parque Nacional Lagunas de Ruidera. Ecohabitat, Toledo, p 395

    Google Scholar 

  • González JA, Asensio I, Fernández A, García R, González Amuchastegui MI, Guerrero L, Rubio V (2000) Acumulaciones de origen frío en el modelado de los paisajes de la rama castellana del Sistema Ibérico y de la Submeseta Sur. In: Peña Monné JL (ed) Procesos y formas periglaciares en la montaña mediterránea, Instituto de Estudios Turolenses, Teruel, pp 149–160

  • Govindaraju K (1994) Compilation of working values and sample description for 383 geostandards. Geostandards Newsl XVIII:158

    Google Scholar 

  • Jiménez Ballesta R, Benayas J, Martín J, Batlle J, Guerra A (1985) Paleoclimatic significance of some paleopedological formations in Central Spain. In: López (eds) Quaternary climate in Western Mediterranean. Univ Autónoma Press, Madrid, pp 133–152

    Google Scholar 

  • Kadeami H, Mermut R (1999) Submicroscopy and stable isotope geochemistry of carbonate and associated palygorskite in Iranian Aridisols. Eur J Soil Sci 30:207–216

    Google Scholar 

  • Kisch H (1990) Recommendations on illite crystallinity. IGCP Project 294, VIGM 1–9

  • Kubler B (1968) Evaluation quantitative du métamorphisme pour la cristallinité de illite. Bull Centre Resea. Pau-SNPA 2:385–397

    Google Scholar 

  • Loveland PJ, Whalley WR (1991) Particle size analysis. In: Smith KA, Mullins CE (eds) Soil analyses: physical methods. Marcel Dekker, New York, pp 271–328

    Google Scholar 

  • McFadden LD, Amundson RG, Chadwick OA (1991) Numerical modelling, chemical, and isotopic studies of carbonate accumulation in soils of arid regions. In: Segor S (ed) “Occurrence characteristics and genesis of carbonate, gypsum and silica accumulations in soils”, vol. 26. SSSA Special Publication, Madison, pp 25–40

    Google Scholar 

  • Moore DM, Reynolds DC Jr (1997) X-ray diffraction and the identification and analysis of clay minerals, 2nd edn. Oxford University Press, New York, pp 378–379

    Google Scholar 

  • Morrison RB (1978) Quaternary soils stratigraphy. Concepts, methods and problems. In: Mahaney WC (ed) Quaternary soils. GeoAbstracts, Norwich, pp 77–108

    Google Scholar 

  • Moseri M, Mongelli G (1988) The relation between the terra rossa and the carbonate residue of the underlying limestones and dolomestones in Apulia, Italy. Clay Miner 43:439–446

    Google Scholar 

  • Ordoñez S, González JA, Garcia del Cura MA, Pedley HM (2005) Temperate and semiarid tufas in the Pleistocene to recent fluvial barrage system in the Mediterranean Area: The Ruidera Lakes Natural Park (Central Spain). Geomorphology 69:332–350

    Article  Google Scholar 

  • Ortiz I, Simón M, Dorronsoro C, Martín F, García I (2002) Soil evolution over the Quaternary period in a Mediterranean climate (SE Spain). Catena 48:131–148

    Article  Google Scholar 

  • Pedley M, Andrews J, Ordoñez S, García MA, González JA, Taylor D (1996) Does climate control the morphological fabric of freshwater carbonates? A comparative study of Holocene barrage tufas from Spain and Britain. Palaeogeogr Palaeoclimatol Palaeoecol 121:239–257

    Article  Google Scholar 

  • Pérez González A (1982) Neógeno y Cuaternario de la Llanura manchega y sus relaciones con la cuenca del Tajo. Tesis doctoral, Univ. Complutense de Madrid, 787 pp

  • Rapp A (1984) Are terra rossa soils in Europe eolian deposits from Africa? Geologiska Foreninges et Stockholm Forhandlingar 105:161–168

    Google Scholar 

  • Retallack GJ (1981) Fossils soils, indicators of ancient terrestrial environments. In: Niklas K (ed) Paleobotany, paleoecology and evolution, vol 1. Praeger Publishers, New York, pp 55–102

    Google Scholar 

  • Retallack GJ (1994) The environmental factor approach in the interpretation of paleosols. In: Amundosn R, Harden J, Amd Singer M (eds) Factors of soil formation. A Fiftieth anniversaire retrospective, vol 33. SSSA Special Publication, Madison, pp 31–64

    Google Scholar 

  • Retallack GJ (1997) Paleosols in the upper Narrabeen group of New South Wales as evidence or early Triassic paleoenvironments without exact modern analogues. Aust J Earth Sci 44(2):185–201

    Google Scholar 

  • Retallack GJ, Lahy GD, Spoon MD (1987) Evidence from paleosols for ecosystem changes across the Cretaceous/Tertiary boundary in Eastern Montana. Geology 15:1090–1093

    Article  Google Scholar 

  • Schultz L (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for Pierce Shale. US Geological Survey Professional Paper 391-C

  • Soil Survey Staff (1992) Keys to soil taxonomy. SMSS Technical Monograph No. 19, 5th edn. Pocahontas Press Inc., Blacksburg

  • Valentine KW, Dalrymple JB (1976) Quaternary buried paleosols, a critical review. Quaternary Res 6:209–220

    Article  Google Scholar 

  • Vaudour J (1979) La région de Madrid. Alterations, sols et paléosols. In: Ophrys (ed) Contribution à l’ètude géomorphologique d’une région méditerranée semiáride. Marseille, France, 390 pp

    Google Scholar 

  • Williams L, Parks G, Crerar D (1985) Silica diagenesis. I. Solubility controls. J Sediment Petrol 50:301–311

    Google Scholar 

  • Yaalon DH (1997) Soils in the Mediterranean region: what makes them different? Catena 28:157–169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimundo Jiménez Ballesta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González Martín, J.A., Rubio Fernández, V., García Giménez, R. et al. Red palaeosols sequence in a semiarid Mediterranean environment region. Environ Geol 51, 1093–1102 (2007). https://doi.org/10.1007/s00254-006-0400-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-006-0400-4

Keywords

Navigation