Skip to main content
Log in

Crystallisation of sodium sulfate: supersaturation and metastable phases

  • Original Article
  • Published:
Environmental Geology

Abstract

Crystallisation of sodium sulfate solutions by evaporation under controlled climatic conditions has revealed the existence of crystalline hydrated sodium sulfate salts not previously reported. The sodium sulfate phase crystallising and the concentration of the solution at the point of crystallisation depends on the climatic conditions (temperature and evaporation rate). During the rehydration of the anhydrous sodium sulfate phase, thenardite, another previously unreported phase was formed prior to the nucleation of the stable phase, mirabilite Na2SO4 · 10H2O. The addition of organic inhibitors changes both the crystallisation and the rehydration behavior in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Benavente D, Garcia del Cura MA, Garcia-Guinea J, Sanchez-Moral S, Ordonez S (2004) Role of pore structure in salt crystallisation in unsaturated porous stone. J Cryst Growth 260:532–544

    Article  Google Scholar 

  • Charola AE, Weber J (1992) The hydration and deterioration mechanism of sodium sulfate. In: Delagado Rodrigues J, Henriques F, Telmo Jeremias F (eds) 7th International congress on deterioration and conservation of stone. Laboratório Nacional de Engenharia Civil, Lisbon, pp 581–590

  • Chaterji S (2000) A discussion of the paper “Crystallisation in pores” by G.W. Scherer. Cem Concr Res 30:669–671

    Article  Google Scholar 

  • Correns CW (1949) Growth and dissolution of crystals under linear pressure. Discuss Faraday Soc 5:267–271

    Article  Google Scholar 

  • Flatt RJ (2002) Salt damage in porous materials: how high supersaturations are generated. J Cryst Growth 242:435–454

    Article  Google Scholar 

  • Füredi-Milhofer H, Babic-Ivancic V, Brecevic L, Filipovic-Vincekovic N, Kralj D, Komunjer L, Markovic M, Skrtic D (1990) Factors influencing nucleation from solutions of supersaturated to different crystal hydrates. Colloids Surf 48:219–230

    Article  Google Scholar 

  • Goudie AS, Viles H (1997) Salt weathering hazards. Wiley, Chichester, 241 p

    Google Scholar 

  • Hawthorne FC, Ferguson RB (1975) Anhydrous sulfates. I: Refinement of the crystal structure of celestite with an appendix on the structure of thenardite. Can Mineral 13:181–187

    Google Scholar 

  • Knacke O, von Erdberg R (1975) The crystallisation pressure of sodium sulfate decahydrate. Ber Bunsen Ges 79:653–657

    Google Scholar 

  • Levy HA, Lisensky GC (1978) Crystal structures of sodium sulfate decahydrate (Glauber’s salt) and sodium tetraborate decahydrate (Borax) redetermination by neutron diffraction. Acta Cryst B 34:3502–3510

    Article  Google Scholar 

  • Mehrotra BN, Hahn T, Eysel W, Röpke H, Illguth A (1978) Crystal chemistry of compounds with thenardite structure. Neues Jahrb Mineral Monatsh 408–421

  • Mehrotra B (1987) Acta Cryst., A43: 119 JCPDS 2002 Card 40–0727

  • Meller N, Hall C, Jupe AC, Colston SL, Jacques SDM, Barnes P, Phipps J (2004) The paste hydration of brownmillerite with and without gypsum: a time resolved synchrotron diffraction study at 30, 70, 100 and 150 °C. J Mater Chem 14:428–435

    Article  Google Scholar 

  • Nord AG (1973) Refinement of the crystal structure of thenardite, Na2SO4 (V). Acta Chem Scand 27:814–822

    Article  Google Scholar 

  • Nyvlt J (1983) Induction period of nucleation and metastable zone width. Collect Czech Chem Commun 48:1977–1983

    Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708

    Article  Google Scholar 

  • Putnis A, Prieto M, Fernandez-Diaz L (1995) Fluid supersaturation and crystallisation in porous media. Geol Mag 132(1):1–13

    Article  Google Scholar 

  • Rodriguez-Navarro C, Doehne E (1999) Salt weathering: influence of evaporation rate, supersaturation and crystallisation pattern. Earth Surf Process Landf 24:191–209

    Article  Google Scholar 

  • Rodriguez-Navarro C, Doehne E, Sebastian E (2000) How does sodium sulfate crystallize? Implications for the decay and testing of building materials. Cem Concr Res 30:1527–1534

    Article  Google Scholar 

  • Ruben HW, Templeton DH, Rosenstein RD, Olovsson I (1961) Crystal structure and entropy of sodium sulfate decahydrate. J Am Chem Soc 83:820–824

    Article  Google Scholar 

  • Scherer GW (2000) Reply to the discussion by S. Chatterji of the paper “Crystallisation in pores”. Cem Concr Res 30:673–675

    Article  Google Scholar 

  • Scherer GW (2004) Stress from crystallization of salt. Cem Concr Res 34:1613–1624

    Article  Google Scholar 

  • Steiger M, Beyer R, Dorn J, Zeunert A (2000) Data compilation and experimental determinations. In: Price C (ed) An expert chemical model for determining the environmental conditions needed to prevent salt damage in porous materials (contract no. ENV4-CT95–0135). EU research report no. 11

  • Steiger M (2005a) Crystal growth in porous materials—I: The crystallization pressure of large crystals. J Cryst Growth 282:455–469

    Article  Google Scholar 

  • Steiger M (2005b) Crystal growth in porous materials—II: Influence of crystal size on the crystallization pressure. J Cryst Growth 282:470–481

    Article  Google Scholar 

  • Werner P-E, Eriksson L, Westdahl M (1985) TREOR, a semi-exhaistive trial-and-error powder indexing program for all symmetries. J Appl Cryst 18:367–370

    Article  Google Scholar 

  • Wetmore FEW, LeRoy DJ (1951) Principles of phase equilibria. McGraw-Hill Book Company, New York, p 200

    Google Scholar 

Download references

Acknowledgment

This work is funded through an EU STREP project (Contract SSP1-CT-2003–501571-SALTCONTROL). We thank J. Schumacher and R. Thewes for the construction of the climate chamber for the crystallisation experiments, A. Breit and V. Rapelius for technical help and P. Schmid-Beurmann for running the TREOR program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Putnis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genkinger, S., Putnis, A. Crystallisation of sodium sulfate: supersaturation and metastable phases. Environ Geol 52, 329–337 (2007). https://doi.org/10.1007/s00254-006-0565-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-006-0565-x

Keywords

Navigation