Skip to main content
Log in

Natural and human-induced dissolution and subsidence processes in the salt outcrop of the Cardona Diapir (NE Spain)

  • Original Article
  • Published:
Environmental Geology

Abstract

The Cardona Diapir in NE Spain, with a salt outcrop about 0.9 km2 in area, has a well-developed endokarstic system that used to discharge into the Cardener River. Underground mining for potassium salt carried out from 1930 to 1990 caused significant changes in the topography and hydrology of the diapir. The accumulation of two halite slag heaps, totalling around 10 million tons, locally dammed the surface drainage, creating closed depressions and preferential zones of water recharge. The waters that infiltrated in one of these depressions, largely derived from uncontrolled sewage disposal, led to the generation of a 335-m-long human-induced cave excavated in one of the slag heaps. Moreover, the inflow of freshwater from the surrounding sandstone aquifer, caused by the excavation of a ventilation gallery, resulted in the generation of a 280-m-long cave. In March 1998, the interception of a phreatic conduit by a halite mine gallery 50 m deep caused dramatic changes in the hydrology and geomorphology of the diapir, including: (a) a sudden decline in the piezometric level of the karstic aquifer; (b) the inflow of freshwater and debris from the Cardener River into the endokarstic system and the mine galleries. A tunnel had to be constructed to divert the river flow from the salt outcrop; (c) massive dissolution of salt, creating new cavities and enlarging the pre-existing ones, including both mine galleries or cave passages. The 4,300-m-long Salt Meanders Cave was largely generated by the inrush of water from the Cardener River into the mine galleries; and (d) the generation of a large number of sinkholes in the vicinity of the Cardener River. An inventory of 178 sinkholes has allowed us to estimate minimum probability values of 4.7 and 8 sinkholes/km2·year for time intervals previous and subsequent to the 1998 mine flood event, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andrejchuk V (2002) Collapse above the world’s largest potash mine (Ural, Russia). Int J Speleol 31(1/4):137–158

    Google Scholar 

  • Anderson NL, Hinds RC (1997) Glacial loading and unloading: a possible cause of rock salt dissolution in the Western Canada Basin. Carbonate Evaporites 12(1):43–52

    Google Scholar 

  • Arkin Y, Gilat A (2000) Dead Sea sinkholes- an ever-developing hazard. Environ Geol 39(7):711–721

    Article  Google Scholar 

  • Belderson RH, Kenyon NH, Stride AH (1978) Local submarine salt karst formation on the Hellenic Outer Ridge, Eastern Mediterranean. Geology 6:716–720

    Article  Google Scholar 

  • Berger Z, Aghassy J (1982) Geomorphic manifestations of salt dome stability. In: Craig RG, Craft JL (eds) Applied geomorphology, Allen and Unwin, London, pp 72–84

  • Bosák P, Bruthans J, Filippi M, Svoboda T, Smíd J (1999) Karst and caves in salt diapirs, SE Zagros Mts. (Iran). Acta Carsol 28(2):42–74

    Google Scholar 

  • Bruthans J, Filippi M, Palatinus L (2000) New findings about salt karst in Zagros Mountains, Iran. Paper presented at the fourth European Caving Expedition Symposium, pp 42–46

  • Bruthans J, Asadi N, Filippi M, Vilhelm Z (2006) Environ Geol (this issue)

  • Barrera EL (2000) Huecos en el valle salado de Cardona. Previsiones y posibles efectos 65

  • Canas JA, García F, Clapés J, Osorio R, Pérez V, Pujades LG, Caselles O (1996) Estudio mediante técnicas de Geo-radar del subsuelo y galerías de la mina de sal abandonada de Cardona para su habilitación como itinerario cultural. Geogaceta 20(4):966–969

    Google Scholar 

  • Cardona F (1990) El carst salino de Cardona. Paper presented at the 5° Congreso Español de Espeleología, Santander, pp 401–408

  • Cardona F (1994) El Forat Mico y el karst en sal de Cardona. Tecnoambiente 38:73–80

    Google Scholar 

  • Cardona F (2004) Morfogènesis de les cavitats en sal de Cardona. Paper presented at the 1er Congrés Catalá d’Espeleologia, Esplugues de Llobregat (Barcelona), 30 October–1 November 2004, pp 158–166

  • Cardona F, Viver J (2002) Sota la sal de Cardona, p 128

  • Christiansen EA (1971) Geology of the Crater Lake Collapse Structure in the Southeastern Saskatchewan. Can J Earth Sci 8:1505–1513

    Google Scholar 

  • Esborrany (1997) Estudi de viabilitat d’un dipósit subterrani controlat de residus especials a l’antigua mina de sal de Cardona

  • Fayas JA (1972) Inyección profunda de residuos industriales. Agua 73:26–41

    Google Scholar 

  • Floquet M (1933) Estudio de las avenidas de agua en minas de potasa. Caso particular de Cardona, Cardona, p 34

  • Ford D (2000) Speleogenesis under unconfined settings. In: Klimchouk AB, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis. Evolution of karst aquifers , pp 319–324

  • Frumkin A (1995) Rapid entrenchment of stream profiles in the salt caves of Mount Sedom, Israel. Earth surf process landf 20:139–152

    Article  Google Scholar 

  • Frumkin A (1998) Salt cave cross-sections and their paleoenvironmental implications. Geomorphology 23:183–191

    Article  Google Scholar 

  • Frumkin A (2000) Speleogenesis in salt-The Mount Sedom area, Israel. In: Klimchouk AB, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis. Evolution of karst aquifers, pp 443–451

  • Frumkin A, Raz E (2001) Collapse and subsidence associated with salt karstification along the Dead Sea. Carbonat Evaporites 16(2):117–130

    Google Scholar 

  • Geoconsulting-Dirección general de Obras Hidráulicas (1984) Estudio hidrogeológico de las aportaciones subterráneas del arroyo salado al río Cardener, Primera fase

  • Gustavson TC (1986) Geomorphic development of the Canadian River Valley, Texas Panhandle: an example of regional salt dissolution and subsidence. Geol Soc Am Bull 97:459–472

    Article  Google Scholar 

  • Gutiérrez F (2004) Origin of the salt valleys in the Canyon Lands section of the Colorado Plateau. Evaporite dissolution collapse versus tectonic subsidence. Geomorphology 57:423–435

    Article  Google Scholar 

  • Gutiérrez F, Orti F, Gutiérrez M, Pérez-González A, Benito G, Gracia Prieto J, Durán Valsero JJ (2001) The stratigraphical record and activity of evaporite dissolution subsidence in Spain. Carbonate Evaporites 16:46–70

    Google Scholar 

  • Hill C (1996) Geology of the Delaware Basin, Guadalupe, Apache, and Glass Mountains, New Mexico and West Texas. Permian Basin Section-SEPM, Publication no. 96-39, p 440

  • Huntoon PW (1982) The Meander anticline, Canyonlands, Utah: An unloading structure resulting from horizontal gliding on salt. Geol Soc Am Bull 93:941–950

    Article  Google Scholar 

  • Jackson MPA, Talbot CJ (1986) External shapes, strain rates, and dynamics of salt structures. Geol Soc Am Bull 97:305–323

    Article  Google Scholar 

  • Jenyon MK (1986) Salt tectonics. Elsevier, London

    Google Scholar 

  • Johnson KS (1989) Development of the Wink sink in West Texas, USA, due to salt dissolution and collapse. Environ Geol Water Sci 14(2):81–92

    Article  Google Scholar 

  • Johnson KS (1993) Dissolution of Permian Salado Salt during Salado time in the Wink area, Winkler County, Texas. New Mexico Geological Society Guidebook, 44th Field Conference, pp 211–218

  • Kappel WM, Yager RM, Todd MS (1999) The Retsof Salt Mine Collapse. In: Galloway D, Jones DR, Ingebritsen SE (eds) Land subsidence in the United States. US Geological Survey, Circular 1182, pp 111–120

  • Kirkham RM, Streufert RK, Kunk MJ, Budhan JR, Hudson MR, Perry WJ (2002) Evaporite tectonism in the Lower Roaring Fork River valley, west-central Colorado. In Kirkham RM, Scott RB, Judkins TW (eds) Late cenozoic evaporite tectonism and volcanism in west-central Colorado, Boulder, Colorado 366, pp 73–99

  • López de Azcona JM (1933) Industria Neolítica de Cardona. Notas y comunicaciones del Instituto Geológico y Minero de España

  • Marin A (1926) La Potasa. Boletín del Instituto Geológico y Minero de España 48, p 355

  • Martinez JD, Johnson KS, Neal JT (1998) Sinkholes in evaporite rocks. Am Sci 86:38–51

    Article  Google Scholar 

  • McGill GE, Stormquist AW (1979) The Grabens of Canyonlands National Park, Utah: Geometry, Mechanics, and Kinematics. J Geophys Res 84(B9):4547–4563

    Article  Google Scholar 

  • Moreno MC, Victoria JM (1969) El karts salino de Cardona. EspeleoSie 4:20–26

    Google Scholar 

  • Mottershead DN, Duane WJ, Inkpen RJ, Wright JS (2006) An investigation of the geometric controls on the morphological evolution of small-scale salt terrains, Cardona, Spain. Environ Geol (this issue)

  • O'Brien GD (1968) Survey of diapirs and diapirism. In: Braunstein J, O'Brien GD (eds) Diapirsm and diapirs. AAPG, Tulsa, pp 1–9

    Google Scholar 

  • Palmer AN (2000) Hydrogeologic control of cave patterns. In: Klimchouk AB, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis. Evolution of karst aquifers, pp 77–90

  • Pueyo JJ (1975) Estudio petrológico y geoquímico de los yacimientos potásicos de Cardona, Suria, Sallent (Barcelona, España), Doctoral thesis, Universitat de Barcelona, p 351

  • Riba O, Maldonado A, Ramírez J (1975) Mapa Geológico de España, Scale 1:50.000, 2nd series, no. 330, Cardona, Madrid, Instituto Geológico y Minero de España, Servicio de Publicaciones del Ministerio de Industria, p 58

  • Sáez A, Riba O (1986) Depósitos aluviales y lacustres paleógenos del margen catalán de la Cuenca del Ebro. In: Anadón P, Cabrera L (eds) Guía de las excursiones del XI Congreso Español de Sedimentología, Barcelona, pp 1–29

  • Sans M (2003) From thrust tectonics to diapirism. The role of evaporites in the kinematic evolution of the eastern South Pyrenean front. Geol Acta 1(3):239–259

    Google Scholar 

  • Sans M, Koyi HA (2001) Modelling the role of erosion in diapir development in contractional settings. In: Koyi HA, Mancktelow NS (eds) Tectonic modelling: a volume in honour of Hans Ramberg: Boulder, Colorado, Geological Society of America memoir, vol 193, pp 111–122

  • Sans M, Verges J (1995) Fold development related to contractional salt tectonics: Southeastern Pyrenean Thrust Front, Spain. In: Jackson MPA, Roberts DG, Snelson S (eds) Salt tectonics: a global perspective: AAPG Memoir 65, pp 369–378

  • Sans M, Muñoz JA, Vergés J (1996) Triangle zone and thrust wedge geometries related to evaporitic horizons (southern Pyrenees). Bull Can Pet Geol 44(2):375–384

    Google Scholar 

  • Servicio Geológico de Cataluña, Sección de Geotecnia e Hidrología (1992) Recuperación de la Vall Salina de Cardona. Primera Fase (Unpublished)

  • SIE-CEA (1967) Mapa de dolinas del afloramiento de sal de Cardona (Unpublished)

  • Talbot CJ, Jarvis RJ (1984) Age, budget and dynamics of an active salt extrusion in Iran. J Struct Geol 6:521–533

    Article  Google Scholar 

  • Talbot CJ, Rogers EA (1980) Seasonal movements in a salt glacier in Iran. Science 208:395–397

    Article  Google Scholar 

  • Trusheim F (1960) Mechanism of salt migration in northern Germany. Bull Am Assoc of Pet Geol 44:1519–1540

    Google Scholar 

  • Wagner G, Mauthe F, Mensik H (1971) Der Salztock von Cardona in Nordostpanien. Geol Rundschau 60:970–996

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Kenneth S. Johnson and Dr. Stanley T. Krukouski for the thorough review of the manuscript. This work has been partially co-financed by the Spanish Education and Science Ministry and the FEDER (project CGL2004-02892/BTE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lucha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucha, P., Cardona, F., Gutiérrez, F. et al. Natural and human-induced dissolution and subsidence processes in the salt outcrop of the Cardona Diapir (NE Spain). Environ Geol 53, 1023–1035 (2008). https://doi.org/10.1007/s00254-007-0729-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-007-0729-3

Keywords

Navigation