Skip to main content
Log in

Groundwater chemical pollution risk: assessment through a soil attenuation index

  • Original Article
  • Published:
Environmental Geology

Abstract

Aquifer vulnerability is frequently estimated through methodologies that don’t consider most physical and chemical soil parameters. A soil attenuation index is proposed to estimate groundwater chemical pollution risk, that takes into account organic carbon content, pH, cation exchange capacity, clay content, phreatic depth and landscape position. The attenuation index is constructed by a methodology similar to that developed for water quality index. P, Mn and Zn concentrations in groundwater from selected places were used to validate the proposed index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aller L, Bennett T, Leher JH, Petty RJ (1985) ‘DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeologic settings’. USEPA Report 600/2-85/018

  • Año Vidal C, Sánchez Diaz J, Antolin Tomás C, Gobelles Estelles M (2002) ‘Capacidad y vulnerabilidad de los suelos de la comunidad Valenciana’. Investigaciones geográficas 28:105–123

    Google Scholar 

  • CDI (2006) http://www.gob.gba.gov.ar/cdi/. Gobierno de la provincia de Buenos Aires

  • Civita M, De Regibus C (1995) ‘Sperimentazione di alcune metodologie per la valutazione della vulnerabilità degli aquiferi’. Q Geol Appl Pitagora Bologna 3:63–71

    Google Scholar 

  • Conesa Fdez.-Vitora V (1993) Methodological guide for enviromental impact evaluation (Guia metodológica para la Evaluación de Impacto Ambiental), 1st edn. Mundi Prensa, Madrid, 276 pp

  • Daly D, Drew D (1999) ‘Irish methodologies for karst aquifer protection’. In: Beek B (ed) Hydrology and engineering geology of sinkholes and karst. Balkema, Rotterdam pp 267–272

    Google Scholar 

  • Derouane J, Dassargues A (1998) ‘Delineation of groundwater protection zones based on tracer test and transport modeling in alluvial sediments’. Environ Geol 36:27–36

    Article  Google Scholar 

  • Doerfliger N, Zwahlen F (1997) ‘EPIK: a new method for outlining of protection areas in karstic environment’. In: Günay G, Jonshon AI (eds) International symposium and field seminar on Karst waters and environmental impacts. Antalya, Balkema, Rotterdam, pp 177–123

  • Foster SSD, Hirata R (1988) Groundwater pollution risk assessment. Pan American centre for sanitary engineering and environmental sciences, Lima, 73 pp

  • Gan J (2002) ‘How to reduce pesticide leaching’. Pesticide wise. University of California, riverside cooperative extension, 4 pp

  • Gogu RC, Dassargues A (2000) ‘Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods’. Environ Geol 29(6):549–559

    Article  Google Scholar 

  • Heredia OS, Fernández Cirelli A (2006) ‘Environmental risks of increasing phosphorous addition in relation to soil sorption capacity’. Geoderma. Available on line

  • Hewitt AE, Shepherd TG (1997) ‘Structural vulnerability in New Zeland soils’. Austr J Soil Res 35:461–474

    Article  Google Scholar 

  • Huddleston JH (1996) ‘How soil properties affect groundwater vulnerability to pesticide contamination’. EM 8559, Oregon State University Extension Service, 4 pp

  • INDEC (2001) Population census 2001. Buenos Aires, INDEC, Argentina

  • Iñiguez AM, Scoppa CO (1971) ‘Mineralogía de arcillas en suelos alcalino-sódicos del noreste de la provincia de Buenos Aires’. In: 6° Reunión Argentina de la Ciencia del Suelo, Córdoba, Argentina. Proceedings, pp 340–360

  • Murphy J, Riley JP (1962) ‘A modified single solution method for determination of phosphate in natural waters’. Anal Chim Acta 27:31-36

    Article  Google Scholar 

  • SAGyP-INTA (1989) Mapa de Suelos de la Provincia de Buenos Aires, escala 1:500.000. SAGyP (ed), Bs. As. Argentina, 527 pp

  • Silva Busso A, Santa Cruz J, Heredia OS (2004) Trazadores Multielementales en Diagnóstico Ambiental de las Aguas Subterráneas del Partido de Escobar, Buenos Aires Argentina. Revista de Geología Aplicada a la Ingeniería y al Ambiente 20:23–28

    Google Scholar 

  • Soil survey staff (2003) Keys to soil taxonomy, 9th edition, USDA, Natural resources service, 332 pp

  • Sparks DL (ed) (1996) Methods of soil analysis: part 3-chemical methods. SSSA Book Series: 5, ASA, Madison, 1390 pp

  • USDA (1996) ‘Soil survey laboratory methods manual’. Soil survey investigations report N° 42. version 3.0. Washington DC, 693 pp

  • Van Stempvoort D, Evert L, Wassenaar L (1993) ‘Aquifer vulnerability index: a GIS compatible method for groundwater vulnerability mapping’. Can Wat Res J 18:25–37

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to UBA and CONICET for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Fernández Cirelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heredia, O.S., Cirelli, A.F. Groundwater chemical pollution risk: assessment through a soil attenuation index. Environ Geol 53, 1345–1351 (2008). https://doi.org/10.1007/s00254-007-0743-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-007-0743-5

Keywords

Navigation