Skip to main content
Log in

Hydrogeochemical and hydrogeological investigations of thermal waters in the Usak Area (Turkey)

  • Original Article
  • Published:
Environmental Geology

Abstract

Thermal waters of the Usak area have temperatures ranging from 33 to 63°C and different chemical compositions. These waters hosted by the Menderes Metamorphic rocks emerge along fault lineaments from two geothermal reservoirs in the area. The first reservoir consists of gneiss, schists, and marbles of the Menderes Metamorphic rocks. The recorded reservoir is Pliocene lacustrine limestone. Hydrogeochemical studies indicate that thermal waters were mixed with surface waters before and/or after heating at depth. The results of mineral equilibrium modeling indicate that all the thermal waters are undersaturated at discharge temperatures for gypsum, anhydrite, and magnesite minerals. Calcite, dolomite, aragonite, quartz, and chalcedony minerals are oversaturated in all of the thermal waters. Water from the reservoir temperatures of the Usak area can reach upto120°C. According to δ18O and δ2H values, all thermal and cold groundwater are of meteoric origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arnorsson S, Gunnlaugsson E, Svavarsson H (1983) The chemistry of geothermal waters in Iceland. III. chemical geothermometry in geothermal investigations. Geochim Cosmoschim Acta 47:567–577

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, New York, p 327

    Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1833–1834

    Article  Google Scholar 

  • Ercan T, Dincel A, Metin S, Turkecan A, Gunay E (1978) Geology of the neogene basins in Usak region (in Turkish). Bull Geol Soc Turkey 21:97–106

    Google Scholar 

  • Fournier RO (1977) A review of chemical and isotopic geothermometers for geothermal systems. In: Proceedings of the symposium on geothermal energy, Cento Scientific Programme, Ankara, pp 133–143

  • Fournier RO (1979) A revised equation for the Na–K geothermometer. Geotherm ResCouncil Trans 3:221–224

    Google Scholar 

  • Gat J, Carmi I (1970) Evaluation of the isotopic composition of atmospheric waters in the Mediterranean Sea area. J Geophys Res 75:3039–3048

    Article  Google Scholar 

  • Gemici U, Filiz S (2001) Hydrogeochemistry of the Cesme geothermal field, western Turkey. J Volcanol Geotherm Res 110:171–187

    Article  Google Scholar 

  • Gemici U, Tarcan G (2002a) Hydrogeochemistry of the Simav geothermal field, western Anatolia, Turkey. J Volcanol Geotherm Res 116:215–233

    Article  Google Scholar 

  • Gemici U, Tarcan G (2002b) Distribution of boron in thermal waters of western Anatolia, Turkey, and examples of their environmental impacts. Environ Geol 43:87–98

    Article  Google Scholar 

  • Giggenbach WF, Gonfiantini R, Jangi BL, Truesdell AH (1983) Isotopic and chemical composition of parbati valley geothermal discharges, NW Himalaya, Indiana. Geothermics 5:51–62

    Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria derivation of Na–K–Mg–Ca geoindicator. Geochim Cosmoschim Acta 52:2749–2765

    Article  Google Scholar 

  • Giggenbach WF, Corrales RS (1992) The isotopic and chemical composition of waters and steam discharges from volcanic-magmatic-hydrothermal systems of the Guanacoste Geothermal Province, Costa Rica. Appl Geochem 7:309–332

    Article  Google Scholar 

  • IAH (International Association of Hydrogeologist) (1979) Map of mineral and thermal water of Europe, Scale 1:500 000. International Association of Hydrogeologist, London

  • Ica M (1979) Geology and hydrogeology investigations of Usak-Esme-Orencik spa. J Geol Eng Ankara, 37–46

  • Kharaka YK, Gunter WD, Affarwall PK, Perkins EH, De Braall JD (1988) SOLMINEQ (a computer program code for geochemical modelling of water–rock interactions. In: US Geological Survey Water Investigations, Report 88–4227

  • Mahon WAJ, Klyen LE, Rhode M (1980) Natural sodium-bicarbonate-sulphate hot waters in geothermal systems: Chinetsu. J Jpn Geotherm Energy Assoc 17:11–24

    Google Scholar 

  • Makris J (1985) Geophysical and geodynamic implications for the evolution of the Hellenides. In: Stanley DI, Wezel FC (eds) Geological evolution of the Mediterranean basin. Springer, New York, pp 23–269

    Google Scholar 

  • Mc Kenzie DP (1978) Active tectonics of the Alpine-Himalayan belt: the Aegean and the surrounding regions. Geophys J R Astron Soc 55:217–254

    Google Scholar 

  • MTA (1995) Inventory of thermal and mineral waters of Turkey, Usak. MTA General Directory, Ankara

  • Mutlu H (1998) Chemical geothermometry and fluid-mineral equilibria for the Omer-Gecek thermal waters, Afyon area, Turkey. J Volcanol Geotherm Res 80:303–321

    Article  Google Scholar 

  • Mutlu H, Gulec N (1998) Hydrogeochemical outline of thermal waters and geothermometry applications in Anatolia (Turkey). J Volcanol Geotherm Res 85:495–515

    Article  Google Scholar 

  • Nicholson K (1993) Geothermal fluids, chemistry and exploration techniques. Springer, Berlin

    Google Scholar 

  • Nieva D, Nieva R (1987) Developments in Geothermal Energy in Mexico, Part 12- Acationic Composition Geothermometer for Prospecting Geothermal Resources. Heat Recovery Syst 7:243–258

    Article  Google Scholar 

  • Qin D, Turner JV, Pang Z (2005) Hydrogeochemistry and groundwater circulation in the Xi’an geothermal field, China. Geothermics 34:471–494

    Article  Google Scholar 

  • Sander P (2007) Lineaments in groundwater exploration: a review of applications and limitations. Hydrogeol J 15:71–74

    Article  Google Scholar 

  • Shaban A, Khawlie M, Abdallah C (2006) Use of remote sensing and GIS to determine recharge potential zones: the case of Occidental Lebanon. Hydrogeol J 14:433–443

    Article  Google Scholar 

  • Solomon S, Quiel F (2006) Groundwater study using remote sensing and geographic information systems (GIS) in the central highlands of Eritrea. Hydrogeol J 14:729–741

    Article  Google Scholar 

  • Tezcan AK (1979) Geothermal studies, their present status and contribution to heat flow contouring in Turkey. In: Cermac V, Rybach L (eds) Terrestrial heat flow in Europe. Springer, Berlin, pp 283–292

    Google Scholar 

  • Tole MP, Armannsson H, Zhong-He P, Arnorsson S (1993) Fluid/mineral equilibrium calculations for geothermal fluids and chemical geothermometry. Geothermics 22(1):17–37

    Article  Google Scholar 

  • Truesdell AH (1976) Summary of section III Geochemical Techniques in Explanation. In: Proceedings, Second United Nations Symposium on the Development and Use of Geothermal Resources. San Francisco, V.1, Washington DC, US Government Printing Office

  • Truesdell AH, Hulston JR (1980) Isotopic evidence of geothermal systems, Chapter 5. In: Fritz P, Fontes J-Ch (eds) Handbook of environmental geochemistry, the terrestrial environment, A. Elsevier, Amsterdam, pp 179–226

    Google Scholar 

  • Verma MP (2001) Silica solubility geothermometers for hydrothermal systems. Water–Rock Interaction. Swets & Zeitlinger, Lisse, pp 349–352

    Google Scholar 

Download references

Acknowledgments

The author wishes to thank Erhan Sener for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysen Davraz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davraz, A. Hydrogeochemical and hydrogeological investigations of thermal waters in the Usak Area (Turkey). Environ Geol 54, 615–628 (2008). https://doi.org/10.1007/s00254-007-0829-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-007-0829-0

Keywords

Navigation