Skip to main content
Log in

Doline probability map using logistic regression and GIS technology in the central Ebro Basin (Spain)

  • Original Paper
  • Published:
Environmental Geology

Abstract

In the surroundings of Zaragoza, karstification processes are especially intense in covered karst areas where fluvial terraces lie directly on Tertiary evaporites. Since the beginning of Quaternary, these processes have lead to the development of collapse and subsidence dolines with a wide range of sizes, which have significant economic impacts. To reduce economic impact and increase safety, a regional analysis of this phenomenon is needed for spatial management. Therefore, a probability map of dolines was developed using logistic regression and geographic information system (GIS) techniques. This paper covers the selection of input data, manipulation of data using the GIS technology, and the use of logistic regression to generate a doline probability map. The primary variable in the doline development in this area is geomorphology, represented by the location of endorheic areas and different terrace levels. Secondary variables are the presence of irrigation and the water table gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arlegui L, Simón JL (2000) Geometry and distribution of regional joint sets in a non-homogeneous stress field: case study in the Ebro Basin (Spain). J Struct Geol 23:297–313

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31

    Article  Google Scholar 

  • Battaglin WA, Goolsby DA (1997) Statistical modeling of agricultural chemical occurrence in midwestern rivers. J Hydrol 196:1–25

    Article  Google Scholar 

  • Beguería S, Lorente A (2003) Landslide hazard mapping by multivariante statictics: comparison of methods and case study in the spanish pyrenees. Instituto Pirenaico de Ecología, Contract no. EVG1: CT-1999-00007. http://damocles.irpi.pg.cnr.it/docs/reports/df_modelling.pdf

  • Benito G, Gutiérrez-Elorza M (1988) Karst in gypsum and its environmental impact on the Middle Ebro Basin Spain. Environ Geol Water Sci 12(2):107–111

    Article  Google Scholar 

  • Benito G, Pérez-Gonzalez A, Gutiérrez-Santolalla F, Machado MJ (1998) River response to Quaternary subsidence due to evaporite solution (Gállego River, Ebro Basin, Spain). Geomophology 22:243–263

    Article  Google Scholar 

  • Benito G, Gutiérrez-Santolalla F, Pérez-González A, Machado MJ (2000) Geomorphological and sedimentological features in Quaternary fluvial systems affected by solution-induced subsidence (Ebro Basin, NE-Spain). Geomorphology 33:209–224

    Article  Google Scholar 

  • Bledsoe BP, Watson CC (2001) Logistic analysis of channel pattern thresholds: meandering, braiding, and incising. Geomorphology 38:281–300

    Article  Google Scholar 

  • CHE (2005) Contenido Cartográfico: Regadíos. http://oph.chebro.es/ContenidoCartoRegadios.htm

  • Clark PJ, Evans FC (1954) Distance to nearest neighbour as measure of spatial relationships in populations. Ecology 35:445–453

    Article  Google Scholar 

  • Cooper AH, Saunders JM (1999) Road and bridge construction across gypsum karst in England. In: Beck BF, Pettit AJ, Herring JG (eds) Hydrogeology and engineering geology of sinkholes and karst. Balkema, Rotterdam, pp 407–412

    Google Scholar 

  • Cooper AH, Farrant AR, Adlam KAM, Walsby JC (2001) The development of a national geographic information system (GIS) for the British karst geohazard and risk assessment. In: Beck BF, Herring JG (eds) Geotechnical and environmental applications of karst and hydrology. Balkema, Rotterdam, pp 125–130

    Google Scholar 

  • Cruz JM, Reiné R, de Rivera F (1997) Metodología utilizada en el estudio “Dotaciones de riego” borrador del Plan Hidrológico del Ebro. Riegos y drenajes XXI 93:45–54

    Google Scholar 

  • Custodio E, Llamas MR (1983) Hidrogeología subterránea. Omega, Barcelona

    Google Scholar 

  • Cvijic J (1981) The dolines: translation of geography. In: Sweeting MM (eds) Karst geomorphology. Hutchinson, Pennsylvania, pp 225–276

    Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS Lantau Island, Hong Kong. Geomorphology 42:213–238

    Article  Google Scholar 

  • Drake JJ, Ford DC (1972) The analysis of growth patterns of two-generation populations: the examples of karst sinkholes. Can Geogr 16:381–384

    Article  Google Scholar 

  • Earth Decision Sciences (2005) GOCAD® Earth decision sciences, Nancy, France

    Google Scholar 

  • ESRI Inc (2005) ArcGIS 9.1. ESRI Inc., Redlands

    Google Scholar 

  • Ford D, Williams P (1989) Karst geomorphology and hydrology. Unwin Hyman, London

  • Gao Y, Alexander EC (2003) A mathematical model for a sinkhole probability map in Fillmore County, Minnesota. In: Beck BF (ed) Proceedings of 9th multidisciplinary conference on sinkholes and the engineering and environmental impacts of karsts. ASCE Geotechnical Special Publication, Huntsville, pp 439–449

    Google Scholar 

  • Gao Y, Alexander EC, Tipping RG (2001) Application of GIS technology to study karst features of southern Minnesota. In: Beck BF, Herring JG (Eds) Geotechnical and environmental applications of karst geology and hydrology. Swets and Zeitliger, Lisse, pp 83–88

    Google Scholar 

  • Gao Y, Alexander EC, Tipping RG (2005a) Karstdatabase development in Minnesota: design and data assembly. Environ Geol 47:1072–1082

    Article  Google Scholar 

  • Gao Y, Alexander EC, Barnes RJ (2005b) Karst database implementation in Minnesota: analysis of sinkhole distribution. Environ Geol 47:1083–1098

    Article  Google Scholar 

  • Green JA, Marken WJ, Alexander EC, Alexander SC (2002) Karst unit mapping using geographic information system technology, Mower County, Minnesota, USA. Environ Geol 42:457–461

    Article  Google Scholar 

  • Guerrero J, Gutiérrez-Santolalla F, Lucha P (2004) Paleosubsidence and active subsidence due to evaporite dissolution in Zaragoza area (Huerva River valley, NE Spain): processes, spatial distribution and protection measures for transport routes. Eng Geol 72(3, 4):309–329

    Article  Google Scholar 

  • Gutiérrez-Elorza M, Gutiérrez-Santolalla F (1998) Geomorphology of the Tertiary gypsum formations in Ebro Depression (Spain). Geoderma 87:1–29

    Article  Google Scholar 

  • Gutiérrez-Santolalla F, Gutiérrez-Elorza M, Marín C, Desir G, Maldonado C (2005a) Spatial distribution, morphometry and activity of La Puebla de Alfindén sinkhole field in the Ebro river valley (NE Spain): applied aspects for hazard zonation. Environ Geol 48:360–369

    Article  Google Scholar 

  • Gutiérrez-Santolalla F, Gutiérrez-Elorza M, Marín C, Maldonado C, Younger PL (2005b) Subsidence hazard avoidance based on geomorphological mapping in the Ebro River valley mantled evaporite karst terrain (NE Spain). Environ Geol 48:370–383

    Article  Google Scholar 

  • ITGE (1995) Mapa Geológico de España a escala 1:50.000: hoja 354-Alagón (27–14). Ministerio de Industria y Energía, Madrid

  • ITGE (1998) Mapa Geológico de España a escala 1:50.000: hoja 353 Pedrola (26–14), 355 Leciñena (28–14), 383 Zaragoza (27–15), 384 Fuentes de Ebro (28–15). Ministerio de Medio Ambiente, Madrid

  • Jiménez-Torrecilla N, Galve JP, Asta MP, Sánchez-Navarro JA (2004) Estudio hidrogeológico de la subsidencia y los humedales salinos en el entorno de Zaragoza. Ayuntamiento de Zaragoza, Universidad de Zaragoza, Zaragoza (unpublished)

  • Johnson KS (2005) Subsidence hazard due to evaporite dissolution in the United States. Environ Geol 48:395–409

    Article  Google Scholar 

  • Kaufmann O, Quinif Y (2002) Geohazard map of cover-collapse sinkholes in the “Tournaisis” area, southern Belgium. Eng Geol 65:117–124

    Article  Google Scholar 

  • Klimchouk K, Cucchi J, Calaforra J, Calaforra M, Askem S, Finocchiaro F, Forti P (1996) Dissolution of gypsum from field observations. Int J Speleology 25(3, 4):37–48

    Google Scholar 

  • Lamont-Blanck J, Younger PL, Forth RA, Cooper AH, Bonniface JP (2002) A decision-logic framework for investigating subsidence problems potentially attributable to gypsum karstification. Eng Geol 65:205–215

    Article  Google Scholar 

  • Lee S, Min K (2001) Staistical analzsis of landslide susceptibility at Yongin, Korea. Environ Geol 40:1095–1113

    Article  Google Scholar 

  • Lei M, Jiang X, Li Y (2001) New advances of karst collapse research in China. In: Beck BF, Herring JG (eds) Geotechnical and environmental applications of karst geology and hydrology. Swets and Zeitlinger, Lisse, pp 145–151

    Google Scholar 

  • Leica (2003) Leica geosystems software ERDAS IMAGINE 8.7. Leica Geosystems, Atlanta

    Google Scholar 

  • MOP (1967) Proyecto Red arterial de Zaragoza: Autopista Zaragoza -Alfajarín. Tramo II. Ministerio de Obras publicas, Zaragoza (unpublished)

  • MOP (1970) Red arterial de Zaragoza: N-II. Autopista ronda norte. Zaragoza, Ministerio de Obras Públicas, Zaragoza (unpublished)

  • MOP (1973) Proyecto de Trazado de la red arterial de Zaragoza: 2° cinturón de la red arterial de Zaragoza, conexión de la N-II con la N-123. Ministerio de Obras Públicas, Zaragoza (unpublished)

  • MOP (1994) Proyecto de construcción: N-232 de Vinaroz a Santander. P.K. 223,6 al P.K. 234,8. Acceso a población (duplicación de calzada. Tramo: El Burgo de Ebro-Zaragoza. Ministerio de Obras Públicas, Zaragoza (unpublished)

  • MOP (2000) Proyecto de construcción. Conexión de la carretera N-232 de Vinaroz a Santander con la Autopista A-68 de Bilbao a Zaragoza. Tramo Casetas. Ministerio de Obras Públicas, Zaragoza (Unpublished)

  • MOP (2003) Proyecto de construcción. Nueva carretera autopista. Ronda sur. Cuarto cinturón de Zaragoza. De la N-II a ña N-232 (Vinaroz). Ministerio de Obras Públicas, Zaragoza (unpublished)

  • Maldonado C, Gutiérrez-Santolalla F, Gutiérrez-Elorza M, Desir G (2000) Distribución espacial , morfometría y actividad de la subsidencia por disolución de evaporitas en un campo de dolinas de colapso (Valle del Ebro, Zaragoza). Cuaternario Geomorfología 14(3, 4):9–24

    Google Scholar 

  • Martínez JD, Johnson KS, Neal JT (1998) Sinkholes in evaporite rocks. Am Sci 86:39–52

    Google Scholar 

  • Martínez-Casasnovas JA, Ramos MC, Poesen J (2004) Assessment of sidewall erosion in large gullies using multi-temporal DEMs and logistic regression analysis. Geomorphology 58:305–321

    Article  Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2000) A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. Int J Climatology 20:1823–1841

    Article  Google Scholar 

  • Ohlmacher GC, Davis JC (2003) Using multiple logistic regression and GIS technology to predict landslides hazards in northeast Kansas, USA. Eng Geol 69:331–343

    Article  Google Scholar 

  • Palmquist R (1979) Geologic controls on doline characteristics in mantled karst. Z Geomorph Suppl Bd 32:90–106

    Google Scholar 

  • Paukštys B, Cooper AH, Arustiene J (1999) Planing for gypsum geohazard in Lithuania and England. Eng Geol 52:93–103

    Article  Google Scholar 

  • Quirantes J (1978) Estudio sedimentológico y estratigráfico del Tercio Continental de los Monegros. Instituto “Fernando el Católico”, Zaragoza

    Google Scholar 

  • Sánchez JL, Marcos JL, de la Fuente MT, Castro A (1998) A logistic regression model applied to short term forecast of hail risk. Phys Chem Earth 23(5, 6):645–648

    Article  Google Scholar 

  • Simón JL, Soriano MA (2002) Actual and potential doline subsidence hazard mapping: case study in the Ebro Basin (Spain). In: Bobrowsky PT (eds) Environmental mapping: methods, theory and practice. Balkema, Rotterdam, pp 649–666

    Google Scholar 

  • Simón JL, Martínez-Gil J, Soriano MA, Arlegui L, Caballero J (1998a) Estudio de riesgos naturales en los terrenos de la orla sudoeste del suelo urbanizable. Ayuntamiento de Zaragoza and Departamento de Geología de la Universidad de Zaragoza, Zaragoza (unpublished)

  • Simón JL, Soriano MA, Arlegui L, Caballero J (1998b) Estudio de riesgos de hundimientos Kársticos en el corredor de la carretera de Logroño. Ayuntamiento de Zaragoza and Departamento de Geología de la Universidad de Zaragoza, Zaragoza (unpublished)

  • Soriano MA (1992) Characteristics of the alluvial dolines developed due to de dissolution of gypsum materials in the cetral Ebro Basin (Spain). Geomorphology 85:59–72

    Google Scholar 

  • Soriano MA, Simón JL (1995) Alluvial dolines in the central Ebro Basin, Spain: a spatial and developmental hazard analysis. Geomorphology 11:295–309

    Article  Google Scholar 

  • Soriano MA, Simón JL (2002) Subsidence rates and urban damages in alluvial dolines of the Central Ebro Basin (NE Spain). Environ Geol 42:476–484

    Article  Google Scholar 

  • SPSS Inc. (2001) SPSS 11 for Windows. SPSS Inc., Chicago

    Google Scholar 

  • Veni G (1999) A geomorphological strategy for conducting environmental impact assessments in Karst areas. Geomophology 31:151–180

    Article  Google Scholar 

  • Whitman D, Gubbels T (1999) Application of GIS technology to the triggering phenomena of sinkholes in Central Florida. In: Beck BF, Pettit AJ, Herring JG (eds) Hydrogeology and engineering geology of sinkholes and karst. Balkema, Rotterdam, pp 67–73

    Google Scholar 

Download references

Acknowledgments

This research is funded by the Deutsche Forschungsgemeinschaft (DFG, Ho 804/7–1 + 2). Thanks to the Confederación Hidrográfica del Ebro, Aragón Region Authority, Zaragoza Council, Ministry of Public Works, Z-amaltea, Control-7, Entecsa, CTA and ESHYG for the useful information they gave us. In addition, we would also like to thank Fernando Pérez-Cabello, Maite Echeverría, Asunción Soriano, José Luis Simón, Néstor Jiménez-Torrecilla, Miguel Ángel García-Vera, José Losada, Teresa Carceller, Manuel Arce and Katy Unger-Shayesteh for their valuable advise as well as Yongli Gao (East Tennessee State University) for his critical and helpful comments and Mike Walker (Darmstadt) for improving the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Lamelas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamelas, M.T., Marinoni, O., Hoppe, A. et al. Doline probability map using logistic regression and GIS technology in the central Ebro Basin (Spain). Environ Geol 54, 963–977 (2008). https://doi.org/10.1007/s00254-007-0895-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-007-0895-3

Keywords

Navigation