Skip to main content
Log in

Estimation of potential pollution from mine tailings in the San Pedro River (1993–2005), Mexico–US border

  • Original Article
  • Published:
Environmental Geology

Abstract

The San Pedro River (SPR) is located in northern Sonora (Mexico) and southeastern Arizona (USA). SPR is a transboundary river that develops along the Sonora (Mexico) and Arizona (USA) border, and is considered the main source of water for a variety of users (human settlements, agriculture, livestock, and industry). The SPR originates in the historic Cananea mining area, which hosts some of the most important copper mineralizations in Mexico. Acid mine drainage derived from mine tailings is currently reaching a tributary of the SPR near Cananea City, resulting in the contamination of the SPR with heavy metals and sulfates in water and sediments. This study documents the accumulation and distribution of heavy metals in surface water along a segment of the SPR from 1993 to 2005. Total concentrations of Cd, Cu, Fe, Mn, Pb, and Zn in surface waters are above maximum permissible levels in sampling sites near mine tailing deposits. Nevertheless, a significant decrease in the Fe and SO4 2− in surface water (SO4 2−: 7,180–460.39 mg/L; Fe: 1,600–9.51 mg/L) as well as a gradual decrease in the heavy and transition metal content were observed during the period from 1994 to 2005. Approximately 2.3 km downstream of the mine tailings, the heavy metal content of the water drops quickly following an increase in pH values due to the discharging of wastewater into the river. The attenuation of the heavy metal content in surface waters is related to stream sediment precipitation (accompanied by metal coprecipitation and sorption) and water dilution. Determining the heavy metal concentration led to the conclusion that the Cananea mining area and the San Pedro River are ecosystems that are impacted by the mining industry and by untreated wastewater discharges arising from the city of Cananea (Sonora, Mexico).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arias HM (2000) International groundwaters. The upper San Pedro River basin case. Nat Resour J 40:199–221

    Google Scholar 

  • Arizona Water Resources Research Center and Arizona Department of Environmental Quality (1995) Manual de campo para el muestreo de la calidad de agua (Field manual for water quality sampling). AWRRC and ADEQ, Tucson, AZ

  • Cendejas CR, Vázquez M, García CJA (1998) Geología y yacimientos minerales de la Carta Cananea, Estado de Sonora, Clave H12–5, Escala 1:250,000 (Geology and ore deposits from the Cananea Chart, Sonora State, number H12-5, scale 1:250,000). Compendios de Geología y Minería (Geology and Mining Compilations), Consejo de Recursos Minerales (Agency for Minerals Resources), México

  • Chapman BM, Jones DR, Jung RF (1983) Processes controlling metal ion attenuation in (AMD) streams. Geochim Cosmochim Acta 47:1957–1973

    Article  Google Scholar 

  • Cidu R, Caboi R, fanfani L, Frau F (1997) Acid drainage from sulfides hosting gold mineralization (Furtei, Sardinia). Environ Geol 30(3/4):231–237

    Article  Google Scholar 

  • CNA (Comisión Nacional del Agua) (1993) Manual de Aseguramiento de Calidad (Manual for quality assurance). Subdirección General de Administración (General Administration Office), Programa de Aseguramiento de la Calidad (Program of Quality Assurance), México

  • CNA (Comisión Nacional del Agua) (1995) Manual de Métodos de Análisis (Analytical methods manual). Subdirección General Técnica (Technical Support Agency), Subgerencia de Laboratorios y Monitoreo (Office for Laboratory and Monitoring), México

  • Connell WD, Miller JG (1984) Chemistry and ecotoxicology of pollution. Wiley, New York

    Google Scholar 

  • Dang Z, Liu C, Haigh M (2002) Mobility of heavy metals associated with the natural weathering of coal mine spoils. Environ Pollut 118:419–426

    Article  Google Scholar 

  • Dinelli E, Lucchini F, Fabbri M, Cortecci G (2001) Metal distribution and environmental problems related to sulfide oxidation in the Libiola copper minea area (Ligurina Apennines, Italy). J Geochem Explor 74:141–152

    Article  Google Scholar 

  • Dold B, Fontbotè L (2001) Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy and mineral processing. J Geochem Explor 74:3–55

    Article  Google Scholar 

  • EPA (1982) Handbook for sampling and sample preservation of water and wastewater (Report No. EPA–600/4-82-029). US Environmental Protection Agency, Washington, DC

  • EPA (1983) Methods for chemical analysis of water and wastes (Report No. EPA-600/4-79-020). US Environmental Protection Agency, Washington, DC

  • EPA (1999) Methods and guidance for analysis of water (EPA 821-C-99-004). Office of Water, US Environmental Protection Agency, Washington, DC

  • Fernández RR, Fernández LS, Arlegui JE (1986) Abandono de Minas: Impacto Hidrológico (Hydrologic impact of abandoned mines). IGME, Madrid

  • Förstner W (1986) Metal speciation in solid wastes-factors affecting mobility. In: Landner L (ed) Speciation of metals in water, sediment and soil systems: proceedings of an international workshop, Sunne, October 15–16, 1986. Springer, Berlin, pp 17–42

  • Gómez AA, Kulatilake PHSW, Villalba AAI, Burgos FD, Sortillón VMR (1994) Investigación de la calidad del agua en la cuenca hidrológica del Río San Pedro, Sonora, México; primera etapa (Research report: water quality of the hydrologic San Pedro Basin, Sonora, Mexico, first campaign). Universidad de Sonora, México

  • Gómez AA, Villalba AAI, Romero AA (1996) Investigación de la calidad del agua en la cuenca hidrológica del Río San Pedro, Sonora, México, segunda etapa (Research report: water quality of the hydrologic San Pedro Basin, Sonora, Mexico, second campaign). Universidad de Sonora, México

  • Gómez AA, Villalba AAI, Acosta RG, Castañeda OM, Kamp D (2004) Metales pesados en el agua superficial del Río San Pedro durante 1997 y 1999 (Heavy metals in surface water from the San Pedro River 1997–1998). Int J Environ Pollut 20(1):5–12

    Google Scholar 

  • Gómez-Alvarez A, Valenzuela-García JL, Aguayo-Salinas S, Meza-Figueroa D, Ramirez- Hernandez J, Ochoa-Ortega G (2007) Chemical partitioning of sediment contamination by heavy metals in the San Pedro River, Sonora, Mexico. Chem Speciat Bioavailab 19(1):25–35

    Article  Google Scholar 

  • Gray NF (1997) Environmental impact and remediation of acid mine drainage: a management problem. Environ Geol 30(1/2):62–71

    Article  Google Scholar 

  • Haney JA (2002) Groundwater modeling and biodiversity conservation on the Lower San Pedro River. Southwest Hydrology 1:8

    Google Scholar 

  • Herr C, Gray NF (1997) Sampling riverine sediments impacted by acid mine drainage: problems and solutions. Environ Geol 29(1/2):37–45

    Article  Google Scholar 

  • Klein L (1973) River pollution 1: chemical analysis. Butterworth & Co, London

  • Linsley RK, Kohler MA, Paulhus JL (1984) Hidrología para ingenieros, segunda edición (Hydrology for engineers, 2nd edn). McGraw-Hill, México

  • Monterroso C, Macias F (1998) Drainage waters affected by pyrite oxidation in a coal mine in Galicia (NW Spain): composition and mineral stability. Sci Total Environ 216:121–132

    Article  Google Scholar 

  • Moody JR, Lindstrom RM (1977) Selection and cleaning of plastic containers for storage of trace elements sample. Anal Chem 49:2264–2267

    Article  Google Scholar 

  • Ritchie AIM (1994) The waste-rock environment. In: Blowes DW, Jambor JL (eds) The environmental geochemistry of sulfide mine wastes, short course handbook vol 22. Mineralogical Association of Canada, Toronto, ON, pp 133–161

  • Skagen SK, Melcher CP, Howe WH, Knopf FL (1998) Comparative use of riparian corridors and oases by migrating birds in southwast Arizona. Conserv Biol 12:896–909

    Article  Google Scholar 

  • Stoica AI, Baiulescu GE, Abould-Enein HY (2000) Analytical studies on the pollution of Arges River. Toxicol Environ Chem 77:143

    Article  Google Scholar 

  • Villalba AI, Gómez AA, Nubes OG, Solís GG, Herrera CS, Bringas AL, De la OM, Cantúa SS, Flores RE, Pérez VAM (2000) Estudio de la calidad del agua en la región fronteriza noreste del estado de Sonora, México (Study of water quality in the border region, northeastern Sonora, Mexico). Universidad de Sonora, México

  • Williams TM, Smith B (2000) Hydrochemical characterization of acute acid mine drainage at Iron Duke Mine Mazowe, Zimbabwe. Environ Geol 39:272–278

    Article  Google Scholar 

  • Wray SD (1998) The impact of unconfined mine tailings and anthropogenic pollution on a semi-arid environment—an initial study of the Rodalquilar mining district, south east Spain. Environ Geochem Health 20:29–38

    Google Scholar 

  • Xiangdong I, Zhenguo S, Onyx WHW, Yok-Sheung L (2001) Chemical forms of Pb, Zn and Cu in the sediments profiles of the Pearl River Estuary. Mar Pollut Bull 42(3):215–223

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the financial support of the International City Council Management Association and the Charles Stewart Mott Foundation, as well as the Enlace Ecologic and Border Ecology Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustín Gómez-Alvarez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Alvarez, A., Meza-Figueroa, D., Villalba-Atondo, A.I. et al. Estimation of potential pollution from mine tailings in the San Pedro River (1993–2005), Mexico–US border. Environ Geol 57, 1469–1479 (2009). https://doi.org/10.1007/s00254-008-1424-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-008-1424-8

Keywords

Navigation