Skip to main content
Log in

Hydrogeochemical controls and usability of groundwater in the semi-arid Mayo Tsanaga River Basin: far north province, Cameroon

  • Original Article
  • Published:
Environmental Geology

Abstract

Deuterium, δ 18O, major ions and dissolved silica in groundwater from semi-arid Mayo-Tsanaga river basin in the Far North Province, Cameroon were used to trace hydrogeochemical processes that control their concentrations and to explore for usability of the water. Electrical conductivity ranges from 57–2,581 μs/cm with alternating low and high values along the hydraulic gradient. Waters from piedmont alluvium show low concentrations in major cations, which peak in Mg within basalt, Na within plain alluvium, and Ca within basalt and the sandy Limani-Yagoua ridge. The initial dominant groundwater composition is CaHCO3, which did not evolve within the basalt and piedmont alluvium, but evolved to NaHCO3 in the granite and plain alluvium. The main processes controlling the major ions composition include the following: (1) dissolution of silicates and fluorite; (2) precipitation of fluorite and carbonate; (3) cation exchange of Ca in water for Na in clay; (4) and anthropogenic activities. The δD and δ 18O ratios vary from −35 to 0.7 and −5.3 to 1.1‰, respectively. The lowest and highest isotope ratios are observed in groundwater within the downstream sandy Limani-Yagoua ridge and the upstream graintes respectively. Variation in isotope ratios depends on altitude effect of −0.48‰ per 100 m between 600 and 850 m asl, and on evaporation, which had insignificant effect on the water salinity. Seventy percent of the groundwater shows poor drinking quality and 90% is suitable for irrigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allison GB, Hughes MW (1983) The use of natural tracers as indicators of soil-water movement in a temperate semi-arid region. J Hydrol 60:157–173

    Article  Google Scholar 

  • Appelo CAJ, Postma D (1993) Geochemistry, groundwater, and pollution. Balkema, Netherlands, p 536

    Google Scholar 

  • Betah SM (1976) Compliment sur la monographie nationale de l’eau (aspect eaux souterraines) Diredtion des mines et de la geologie, Cameroon

  • Boutrais J (1984) Le milieux naturels et L’occupation du sol. In: Jean B (ed) Le Nord du Cameroon: des homes, une region, pp 63–100. Collection memoires 102. Editions de L’ORSTOM, Paris

  • Budyko MI (1951) On climate factors of runoff. Prob. Fiz. Geogr. 16 in Russian Canadian Council of Ministers of the Environment (2001a) Canadian water quality guidelines for the protection of aquatic life. CCME water quality index 1.0, Technical report. http://www.ccme.ca

  • Canadian Council of Ministers of the Environment (2001b) Canadian water quality guidelines for the protection of aquatic life. CCME water quality index 1.0, user’s manual. http://www.ccme.ca

  • Clarke I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, Boca Raton

    Google Scholar 

  • Coleman ML, Stephard TJ, Durnham JJ, Rouse JE, Moore GR (1982) Reduction of water with zinc for hydrogen isotope analysis. Anal Chem 54:993–995

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Article  Google Scholar 

  • Demlie M, Wohnlich S, Wisotzky F, Gizaw B (2007) Groundwater recharge, flow and hydrogeochemical evolution in a complex volcanic aquifer system, central Ethopia. Hydrogeol J 15:1169–1181

    Article  Google Scholar 

  • Deutsch WJ (1997) Groundwater geochemistry: fundamentals and applications to contamination. Lewis, New York, p 221

    Google Scholar 

  • Dobrzynski D (2005) Silica origin and solubility in groundwater from the weathered zone of sedimentary rocks of the Intra-Sudetic basin, SW Poland. Acta Geol Pol 55(4):445–462

    Google Scholar 

  • Edmunds WM, Carrillo-Rivera JJ, Cardona A (2002) Geochemical evolution of groundwater beneath Mexico city. J Hydrol 258:1–24

    Article  Google Scholar 

  • Epstein S, Mayeda T (1953) Variation of oxygen-18 content of waters from natural sources. Geochim Cosmochim Acta 4:213–224

    Article  Google Scholar 

  • Garrels RM, Mackenzie FT (1967) Origin of the chemical composition of some springs and lakes. In: Gould RF (ed) Equillibrium concepts in natural water systems. American Chemical society, Washington, DC, pp 222–242

    Chapter  Google Scholar 

  • Gat JR (1996) Oxygen and hydrogen isotopes in the hydrologic cycle. Annu Rev Earth Planet Sci 24:225–262

    Article  Google Scholar 

  • Gee GW, Hillel D (1988) Groundwater recharge in arid region: review and critique of estimation methods. Hydrol Proc 2:255–266

    Article  Google Scholar 

  • Giggenbach WF (1990) Water and gas chemistry of Lake Nyos and its bearing on the eruptive process. J Volcanol Geothermal Res 42:337–362

    Article  Google Scholar 

  • Goni IB (2006) Tracing stable isotope values from meteoric water to groundwater in the southwestern part of the Chad basin. Hydrogeol J 14:742–752

    Article  Google Scholar 

  • Hem JD (1991) Study and interpretation of the chemical characteristics of natural water, 3rd edn. Book 2254. Scientific, Jodhpur

    Google Scholar 

  • Herczeg AL, Simpson HJ, Mazor E (1993) Transport of soluble salts in a large semiarid basin. River Murray, Australia. J Hydro 144:59–84

    Article  Google Scholar 

  • Hervieu J (1969) Le Quaternaire Du Nord-Cameroon Schema D’evolution Geomorphologique et Relations Avec La Pedogenese. Ca. ORSTOM. Ser Pedol, vol 8, No. 3

  • IAEA (2007). Atlas of isotope hydrology. Africa–Vienna. ISBN 978-92-0-1072707-8 ImesJL

  • IAEA (2007) Global network of isotopes in precipitation (GNIP) Database IAEA/WMO, Vienna, Austria, http://www.isohis.iaea.org. Cited 22 April 2008

  • IGNP (1965) Carte de L’Afrique Centrale au 1/50000. Republique Federale du Cameroon, feuille NC-33-XIV-3a, 3b, 4b, and 4c

  • ISI: 11624(1986) Guidelines for quality of irrigation water, Bureau of Indian Standards, New Delhi

  • Jalali M (2006) Chemical characteristics of groundwater in parts of mountainous region, Alvand, Hamadan, Iran. Environ Geol 51:433–446

    Article  Google Scholar 

  • Kortatsi BK, Tay CK, Anornu G, Hayford E, Darty GA (2008) Hydrogeochemical evolution of groundwater in the lower Offin basin. Ghana Environ Geol 53:1651–1662

    Article  Google Scholar 

  • Kusakabe M, Ohba T, Issa, Yoshida Y, Satake H, Ohizumi T, Evanns WC, Tanyileke G, Kling GW (2008) Evolution of CO2 in Lakes Monoun and Nyos, Cameroon, before and during controlled degassing. Geochem J 42:93–118

  • McEachern S (2003) Processes of montagnard ethnogenesis in the northern mandaras mountain, Cameroon. PhD thesis. 433p. University of Calgary, Canada. ISBN 0-9544730-1-9. Mandaras Publishing

  • Moller, Detler (1990) The Na/Cl ratio rainwater and sea salt chloride cycle. Tellus B 3:254–262

    Google Scholar 

  • Molua E1, Lambi CM (2006) Climate hydrology and water resources in Cameroon. CEEPA

  • Nagaraju A, Surresh S, Killam K, Hudson-Edwards K (2006) Hydrogeochemistry of waters of Mangampeta Barite Mining Area, Cuddapach Basin, Andhra Pradesh, India. Turk J Environ Sci 30:203–219

    Google Scholar 

  • Ngako V, Njonfang E, Aka FT, Affaton P, Nnange JM (2006) The north–south Paleozoic to quaternary trend of alkaline magmatism from Niger–Nigeria to Cameroon: complex interaction between hotspots and Precambrian faults. J Afr Earth Sci 45:241–256

    Article  Google Scholar 

  • Ngounou-Ngatcha B, Murdry J, Wakponou A, Ekodeck GE, Njitchoua R, Sarrot-Reynauld J (2001) The Limani-Yagoua mega sand-ridge, northern Cameroon, and its hydrological importance. J Afr Earth Sci 32(4):889–898

    Article  Google Scholar 

  • Ngounou-Ngatcha B, Murdry J, Sarrot-Reynauld J (2007) Groundwater recharge from rainfall in the southern border of Lake Chad in Cameroon. World Appl Sci J 2:125–131

    Google Scholar 

  • Njitchoua R, Ngounou-Ngatcha B (1997) Hydrogeochemistry and environmental isotope investigations of the north Diamare plain northern Cameroon. J Afr Earth Sci 25(2):307–316

    Article  Google Scholar 

  • Njitchoua R, Aranyossy JF, Fontes JC, Michelot JL, Naah E, Zuppi GM (1995) Oxygen-18, deuterium et chlorures dans les precipitations a Garoua (Nord-Cameroon): implications meteorolgiques. CR Acad Sci Paris, t 321, serie IIa: 853–860

  • Nouvelot JF (1972) Hydrologie des Mayos du Nord Cameroun. Monographie de la Tsanaga. Raport terminal 119p. ORSTOM

  • Peronne Y, Dumort JC (1968) Carte geologigue de reconnaissance de La Republique Federale Du Cameroon. Feuille No: NC 33 NO E62. Maroua

  • Petrides B, Cartwright I, Weaver TR (2006) The evolution of groundwater in the Tyrell catchment, south-central Murray Basin, Victoria, Australia. Hydrogeol J 14:1522–1543

    Article  Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water analyses. Am Geophys Union Trans 25:914–923

    Article  Google Scholar 

  • Satake H, Kita Y, Hayashi H, Murata M (2007) Geochemical investigation around the Mozumi-Sukenobe fault survey tunnel. Geodynamics of atotsugawa fault system. In: Ando M (ed) pp 1–26

  • Saxena VK, Ahmed S (2001) Dissolution of fluoride in groundwater: a water-rock interaction study. Environ Geol 40:1084–1087

    Article  Google Scholar 

  • Schoellar H (1977) Geochemistry of groundwater. Ch. 15 In: Groundwater studies—an international guideline for research and practice, UNESCO, Paris pp 1–18

  • Srinivasamoorthy K, Chindambaram S, Prasanna MV, Vasanthavihar M, Peter J, Anandhan P (2008) Identification of major sources controlling groundwater chemistry from a hard rock terrain-A case study from Mettur taluk, Salem district, Tamil Nadu, India. J Earth Syst Sci 117(1):49–58

    Article  Google Scholar 

  • Subba Rao N (2006) Seasonal variation of groundwater quality in a part of Gunter District, Andhra Pradesh, India. Environ Geol 49:413–429

    Article  Google Scholar 

  • Thomas JM, Welch AH, Preissler AM (1989) Geochemical evolution of groundwater in Smith Creek Valley—a hydrologically closed basin in central Nevada, USA. Appl Geochem 4:493–510

    Article  Google Scholar 

  • Tillement B (1972) Hydrogeologie du Nord—Cameroun. Rapport 6, 294p. Direction des Mines et de la Geologie, Yaounde, Cameroon

  • Tsujimura M, Abe Y, Tanaka T, Shimade J, Higuchi S, Yamanaka T, Davaa G, Oyunbaatar D (2007) Stable isotopic and geochemical characteristics of groundwater in Kherlin River Basin: a semi-arid region in Eastern Mongolia. J Hydrol 333:47–57

    Article  Google Scholar 

  • UNDP (1975) Recherche et exploitation pilote d`eaux souterraines dans le Nord Cameroun. Contrat 58/72. Rapport final, Annexe technique No. 1–4. Hydrogeo. Roma-Pisa, Italy

  • Villholth KG (2006) Groundwater assessment and management: implications and opportunities of globalization. Hydrogeol J 14:330–339

    Article  Google Scholar 

  • Wen X, Wu Y, Zhang Y, Liu F (2005) Hydrochemical characteristics and salinity of groundwater in the Ejina basin, north western China. Environ Geol 48:665–675

    Article  Google Scholar 

  • WHO (1989) Health guidelines for the use of wastewater in agriculture and aquaculture. Report of WHO scientific group-Technical report series 778, WHO, Geneva, 74 pp

  • Wilson M (1988) Geomorphology and archaeological visibility in the northern mandara mountains and mora plain (Cameroon): Preliminary results. In: Daniel B, Henri T (eds) Collection colloques et seminaries, Editions de L’ORSTOM, Paris pp 9–50

  • Zhu GF, Su YH, Feng Q (2008) The hydrochemical characteristics and evolution of groundwater and surface water in the Heihe River Basin, northwest China. Hydrogeol J 16:167–182

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilson Y. Fantong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Chemical and physical parameters mesured in groundwater (DOC 200 kb)

Chemical and physical parameters mesured in groundwater (DOC 223 kb)

254_2008_1629_MOESM3_ESM.tif

Plots showing variation of Na (Fig. 3a), Ca (Fig. 3b), Mg (Fig. 3c) K (Fig. 3d), F (Fig. 3e) and dissolved silica (3f) in groundwater within different rock types in study area (TIFF 21 kb)

254_2008_1629_MOESM4_ESM.tif

Plots showing variation of Na (Fig. 3a), Ca (Fig. 3b), Mg (Fig. 3c) K (Fig. 3d), F (Fig. 3e) and dissolved silica (3f) in groundwater within different rock types in study area (TIFF 25 kb)

254_2008_1629_MOESM5_ESM.tif

Plots showing variation of Na (Fig. 3a), Ca (Fig. 3b), Mg (Fig. 3c) K (Fig. 3d), F (Fig. 3e) and dissolved silica (3f) in groundwater within different rock types in study area (TIFF 22 kb)

254_2008_1629_MOESM6_ESM.tif

Plots showing variation of Na (Fig. 3a), Ca (Fig. 3b), Mg (Fig. 3c) K (Fig. 3d), F (Fig. 3e) and dissolved silica (3f) in groundwater within different rock types in study area[INSERT CAPTION HERE] (TIFF 21 kb)

254_2008_1629_MOESM7_ESM.tif

Plots showing variation of Na (Fig. 3a), Ca (Fig. 3b), Mg (Fig. 3c) K (Fig. 3d), F (Fig. 3e) and dissolved silica (3f) in groundwater within different rock types in study area (TIFF 21 kb)

254_2008_1629_MOESM8_ESM.tif

Plots showing variation of Na (Fig. 3a), Ca (Fig. 3b), Mg (Fig. 3c) K (Fig. 3d), F (Fig. 3e) and dissolved silica (3f) in groundwater within different rock types in study area (TIFF 19 kb)

Plot of δ18O versus altitude from 600 to 850 m asl showing altitude effect in the groundwater (TIFF 44 kb)

Plot of δ18O against Cl showing a scattered distribution. The cluater ‘A’, ‘B’, and ‘C’ are also observed (TIFF 27 kb)

254_2008_1629_MOESM11_ESM.tif

Variation of d-excess in groundwater as a function of altitude. The clusters ‘A’, ‘B’, and ‘C’ in figure 7 are observed (TIFF 63 kb)

254_2008_1629_MOESM12_ESM.tif

b. Saturation index with respect to fluorite showing that group 1 groundwater were undersaturated, while group 2 were supersaturated thus posing dissolution threat with time (TIFF 22 kb)

254_2008_1629_MOESM13_ESM.tif

a. Na/Ca ratio (meq/L) against fluoride (meq/L), showing a positive correlation and clustering the groundwater into groups 1 and 2 (TIFF 21 kb)

254_2008_1629_MOESM14_ESM.tif

Plots of groundwater samples in (a) Na2O- Al2O3- SiO2- H2O and (b) CaO-Al2O3-SiO2-H2O systems at 25°C. Thermodynamic data used in constructing these diagrams are those given in Fritz (1976) (TIFF 24 kb)

254_2008_1629_MOESM15_ESM.tif

Plots of groundwater samples in (a) Na2O- Al2O3- SiO2- H2O and (b) CaO-Al2O3-SiO2-H2O systems at 25°C. Thermodynamic data used in constructing these diagrams are those given in Fritz (1976) (TIFF 27 kb)

Water Quality Index of groundwater in study area (TIFF 93 kb)

Wilcox diagram showing salinity hazard and Sodium Absorption Ratio of groundwater in study area (TIFF 170 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fantong, W.Y., Satake, H., Ayonghe, S.N. et al. Hydrogeochemical controls and usability of groundwater in the semi-arid Mayo Tsanaga River Basin: far north province, Cameroon. Environ Geol 58, 1281–1293 (2009). https://doi.org/10.1007/s00254-008-1629-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-008-1629-x

Keywords

Navigation