Skip to main content
Log in

Rockfall-induced block propagation on a soil slope, northern Italy

  • Original Article
  • Published:
Environmental Geology

Abstract

This paper reports the field evidence and the kinematical study of the motion of two blocks (A and B) mobilised by a rockfall in Lavone (Valtrompia, northern Italy) on 14 February 1987. The two sequences of impact marks left by the blocks on the ground surface were measured and the lithostratigraphical features of the debris slope were surveyed. On the basis of the field-collected input data, several computer simulations were carried out to calculate the coefficients of restitution (E) satisfying the trajectory conditions. The computed output values show that rebound trajectories require high coefficients of restitution (0.8 ≤ E ≤ 0.9). Back-calculated impact velocities range from 9.2 to 19.8 m/s. Trajectory heights vary from 0 to 2.4 m above the slope surface. Block trajectories differ considerably according to the circumstances of initial air projection, i.e. to initial rebound angle (αr). The calculated values of (αr) denote a considerable range (36°), emphasising the random nature of this parameter. The described case-history shows that rockfall computer analyses can be an effective tool to describe the bouncing propagation of single blocks but care must be taken in choosing the restitution coefficient E and the geometrical parameters of initial air projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

α:

angle of initial block air projection (°)

αi :

angle of block impact trajectory compared to slope surface (°)

αr :

angle of initial block rebound compared to horizontal (°)

αu :

angle of initial block rebound compared to slope surface (°)

αr*:

critical angle of initial projection determining maximum rebound length (°)

β:

slope angle (°)

η:

normal to slope surface

θn :

incidence angle of block impact (°)

θr :

reflection angle of block rebound (°)

ω:

block rotation velocity (m/s)

E :

coefficient of restitution on impact

E n :

ratio between the normal components of the rebounding and impacting velocities

E t :

ratio between the tangential components of the rebounding and impacting velocities

E*:

limit value of the restitution coefficient for a steady rebound propagation

l :

block impact mark length (cm)

L :

block rebound length (m)

R :

reaction force of slope material to impacting block (kN)

R n :

normal component of reaction force (kN)

R t :

tangential component of reaction force (kN)

t 0−n :

time of block-slope interaction stage (s)

V 0 :

initial block velocity

V i :

block impact velocity (m/s)

V r :

block rebound velocity (m/s)

V xy :

block translation velocity in the XOY plane (m/s)

z :

block impact mark depth (cm)

References

  • Agliardi F, Crosta G (2003) High resolution three-dimensional numerical modelling of rockfalls. Int J Rock Mech Min Sci 40:455–471

    Article  Google Scholar 

  • Alejano LR, Pons B, Bastante FG, Alonso E, Stockhausen HW (2007) Slope geometry design as a means for controlling rockfalls in quarries. Int J Rock Mech Min Sci 44:903–921

    Article  Google Scholar 

  • Antoine P, Camporota P, Giraud A, Rochet L (1987) La menace d’écroulement aux Ruines de Sechilienne (Isère) [The menace of rockfall at the Ruines de Sechilienne (Isère)]. Bull Liaison Labo P et Ch 150/151:55–64

    Google Scholar 

  • Aste’ JP, Falcetta JL (1987) Ecroulement de masses rocheuses. Un nouveau modèle probabiliste de prévision de trajectoire - Vers une novelle méthode d’analyse quantitative de la stabilité d’une falaise rocheuse (Rock mass collapse. A new probabilistic model for predicting the trajectories—towards a new quantitative method for analysing the stability of a rock cliff). Bureau de Recherches Géologiques et Minières—Service Géologique Regional Rhone-Alpes, pp 1–32

  • Aste’ JP, Cambou B, Falcetta JL (1984) Comportement des masses rocheuses instables. De la prévision a la prévention (The behaviour of unstable rock masses. From the forecast to the prevention). Proceedings of 4th symposium on landslides, Toronto vol 1(2), pp 441–446

  • Azimi C, Desvarreaux P, Giraud A, Martin-Cocher J (1982) Méthode de calcul de la dynamique des chutes de blocs: application à l’étude du versant de la montagne de La Pale (Vercors) [A calculation method to analyse the dynamics of falling blocks: an application for the study of the slope at La Pale Mountain (Vercors)]. Bull Liaison Labo P et Ch 122:93–102

    Google Scholar 

  • Azzoni A, De Freitas MH (1995) Experimentally gained parameters, decisive for rockfall analysis. Rock Mech Rock Eng 28(2):111–124

    Article  Google Scholar 

  • Azzoni A, La Barbera G, Zaninetti A (1995) Analysis and prediction of rockfalls using a mathematical model. Int J Rock Mech Min Sci and Geomech 32:709–724

    Article  Google Scholar 

  • Bozzolo D, Pamini R (1982) Modello matematico per lo studio della caduta dei massi (A mathematical model for analysing the block fall). Laboratorio di Fisica Terrestre, Dip Pubbl Educazione, Lugano-Trevano, p 89

  • Bozzolo D, Pamini R (1986) Simulation of rockfalls down a valley side. Acta Mech 63:113–130

    Article  Google Scholar 

  • Bozzolo D, Pamini R, Hutter K (1987) Rockfall analysis—a mathematical model and its test with field data. Proceedings of 6th International Congress on Rock Mechanics, Montreal vol 2, pp 555–560

  • Broili L (1973) In situ tests for the study of rockfall. Geologia applicata e Idrogeologia 8(1):105–111

    Google Scholar 

  • Broili L (1977) Relations between scree slope morphometry and dynamics of accumulation processes. Rockfall dynamics and protective works effectiveness. ISMES Publication, Bergamo 20–21 May 1976, vol 90, pp 11–24

  • Budetta P, Santo A (1994) Morphostructural evolution and related kinematics of rockfalls in Campania (southern Italy): a case study. Eng Geol 36:197–210

    Article  Google Scholar 

  • Camponuovo GF (1977) ISMES experience on the model of S. Martino. Rockfall dynamics and protective work effectiveness. ISMES Publication, Bergamo, 20–21 May 1976, vol 90, pp 25–38

  • Chau KT, Wong RHC, Lee CF (1998) Rockfall problems in Hong Kong and some new experimental results for coefficient of restitution. Int J Rock Mech Min Sci 35(4–5):662–663

    Article  Google Scholar 

  • Chau KT, Wong RHC, Wu JJ (2002) Coefficient of restitution and rotational motions of rockfall impacts. Int J Rock Mech Min Sci 39:69–77

    Article  Google Scholar 

  • Crosta GB, Agliardi F (2003) A new methodology for physically based rockfall hazard assessment. Nat Hazard Earth Syst Sci 3:407–422

    Article  Google Scholar 

  • Descoeudres F, Zimmermann TH (1987) Three-dimensional dynamic calculation of rockfalls. Proceedings of 6th International Congress on Rock Mechanics, Montreal, vol 1, pp 337–342

  • Di Prisco C, Vecchiotti M (2006) A rheological model for the description of boulder impacts on granular strata. Geotechnique 56(7):469–482

    Article  Google Scholar 

  • Dorren LKA (2003) A review of rockfall mechanics and modelling approaches. Prog Phys Geogr 27(1):69–87

    Article  Google Scholar 

  • Dorren LKA, Seijmonsbergen AC (2003) Comparison of three GIS-based models for predicting rockfall runout zones at a regional scale. Geomorphology 56(1–2):49–64

    Article  Google Scholar 

  • Dorren LKA, Berger F, le Hir C, Mermin E, Tardif P (2005) Mechanism, effects and management implications of rockfall in forests. For Ecol Manag 215:183–195

    Article  Google Scholar 

  • Evans SG, Hungr O (1993) The assessment of rockfall hazard at the base of talus slopes. Can Geotech J 30:620–636

    Article  Google Scholar 

  • Falcetta JL (1985) Un nouveau modèle de calcul de trajectories de blocs rocheux [A new calculation model for analysing the trajectories of rock blocks]. Rev Fr Géotech 30:11–17

    Google Scholar 

  • Fornaro M, Peila D, Nebbia M (1990) Block falls on rock slopes—application of a numerical simulation program to some real cases. In: Price DG (ed) Proceedings of the Sixth International Congress IAEG, Amsterdam. Balkema, Amsterdam, pp 2173–2180

    Google Scholar 

  • Frattini P, Crosta G, Carrara A, Agliardi F (2008) Assessment of rockfall susceptibility by integrating statistical and physically-based approaches. Geomorphology 94:419–437

    Article  Google Scholar 

  • Giani GP, Giacomini A, Migliazza M, Segalini A (2004) Experimental and theoretical studies to improve rockfall analysis and protection work design. Rock Mech Rock Eng 37(5):369–389

    Article  Google Scholar 

  • Guzzetti F, Crosta G, Detti R, Agliardi F (2002) STONE: a computer program for the three-dimensional simulation of rock-falls. Comput Geosci 28(9):1081–1095

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ghigi S (2004) Rockfall hazard and risk assessment along a transportation corridor in the Nera Valley, central Italy. Environ Manage 34:191–208

    Article  Google Scholar 

  • Habib P (1977) Note sur le rebondissement des blocs rocheux (A note on the rebounds of rock blocks). ISMES Publication, Bergamo, vol 90, pp 123–125

  • Hacar B, Bollo F, Hacar R (1977) Bodies falling down on different slopes. Dynamic study. Proceedings of 9th International Conference Soil Mechanism Found Eng, Tokyo vol 2, pp 91–95

  • Hoek E (1986) Rockfall: a computer program for predicting rockfall trajectories. Unpublished internal notes. Golder Associates, Vancouver

    Google Scholar 

  • Hoek E (1987) A basic microcomputer program for analysis of rockfalls. Department of Civil Engineering CIV 1460S, University of Toronto, Rock Eng

  • Hoek E (1990) Rockfall—a program in BASIC for the analysis of rockfalls from the slopes. Golder Associates, University of Toronto, Unpublished notes

  • Hungr O, Evans SG (1988) Engineering evaluation of fragmental rockfall hazards. Proceedings of 5th International Symposium on Landslides, Lausanne pp 685–690

  • Jones CL, Higgins JD, Andrew RD, (2000) Colorado rock fall simulation program: version 4.0. Colorado Dept Transp, Colorado Geological Survey, p 127

  • Labiouse V, Descoeudres F, Montani S, Schmidhalter CA (1994) Etude expérimentale de la chute de blocs rocheux sur une dalle en béton armé recouverte par des matériaux amortissants. Rev Fr Geotech 69(4):41–62

    Google Scholar 

  • Paronuzzi P (1987a) Modelli di calcolo per l’analisi della propagazione di blocchi rocciosi in frana (Calculation models for analysing the propagation of rock blocks mobilised by rockfalls). Riv Ital Geotecnica 1987(4):145–165

    Google Scholar 

  • Paronuzzi P (1987b) RockFall: un programma basic per la simulazione cinematica dei crolli litoidi [RockFall: a basic program for the kinematical simulation of rockfalls]. Boll Assoc Miner SubAlp 1–2:185–196

    Google Scholar 

  • Paronuzzi P (1989a) Studio geomeccanico dei rimbalzi di blocchi mobilizzati da un crollo litoide: la frana di Lavone (Brescia) [Geomechanical study of the block rebounds mobilised by a rockfall: the Lavone landslide (Brescia)]. Congr Int. di Geoingegneria, Torino, settembre 1989, vol 2, pp 861–868

  • Paronuzzi P (1989b) Probabilistic approach for design optimization of rockfall protective barriers. Q J Eng Geol 22:175–183

    Article  Google Scholar 

  • Paronuzzi P, Artini E (1999) Un nuovo programma in ambiente Windows per la modellazione della caduta massi (A new Windows code for modelling the block propagation). Geologia Tecnica e Ambientale. Roma 1/99:13–24

    Google Scholar 

  • Paronuzzi P, Coccolo A (1995) Crollo di progetto e affidabilità delle barriere paramassi [The design rockfall and the reliability of rockfall protective barriers]. Difesa del Suolo GEAM, giugno-settembre 1995, 86:147–154

  • Paronuzzi P, Blasi L, Cautilli F, Tassoni E (1996) La falesia delle Acque Dolci di Monte Argentario: modellazione cinematica di caduta massi e progettazione delle opere di difesa (The Acque Dolci cliff near M. Argentario: kinematical modelling and design of defensive works). Quarry and Construction, Febbraio 1996, vol 2, pp. 79–94

  • Pfeiffer TJ, Bowen TD (1989) Computer simulation of rockfalls. Bull Assoc Eng Geol 26(1):135–146

    Google Scholar 

  • Pierson LA, Gullixson CF, Chassie RG (2001) Rockfall catchment area design guide. Final report SPR-(032) Metric Edition. Oregon Dept Transp & FHWA (December 2001). http://www.oregon.gov/ODOT/TD/TP_RES/docs/Reports/RokfallCatchAreaDesMetric.pdf

  • Piteau DR (1977) Computer rockfall model. Rockfall dynamics and protective work effectiveness. ISMES Publication, Bergamo, 20–21 May 1976, vol 90, pp 127–128

  • Richards LR (1988) Rockfall protection: a review of current analytical and design methods. Secondo ciclo di conferenze di meccanica ed ingegneria delle rocce, MIR, Politecnico di Torino, vol 11, pp 1–13

  • Rochet L (1987) Application des modèles numériques de propagation a l’étude des éboulements rocheux (An application of propagation numerical models for the study of rockfalls). Bull Liaison Labo P et Ch 150/151:84–95

    Google Scholar 

  • Rocscience (2002) RocFall user manual. Statistical analysis of Rockfalls. Rocscience User’s Guide, p 59. http://www.rocscience.com/roc/software/RocFall.htm

  • Schweigl J, Ferretti C, Nossing L (2003) Geotechnical characterization and rockfall simulation of a slope: a practical case study from south Tyrol (Italy). Eng Geol 67:281–296

    Article  Google Scholar 

  • Spang RM, Rautenstrauch RW (1988) Empirical and mathematical approaches to rockfall protection and their practical applications. Proc 5th International Symposium on Landslides, Lausanne pp 1237–1243

  • Topal T, Akin M, Ozden UA (2007) Assessment of rockfall hazard around Afyon Castle, Turkey. Environ Geol 53:191–200

    Article  Google Scholar 

  • Wu SS (1985) Rockfall evaluation by computer simulation. Transp Res Rec 1031:1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Paronuzzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paronuzzi, P. Rockfall-induced block propagation on a soil slope, northern Italy. Environ Geol 58, 1451–1466 (2009). https://doi.org/10.1007/s00254-008-1648-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-008-1648-7

Keywords

Navigation