Skip to main content
Log in

Estimation of pelvic tilt on anteroposterior X-rays—a comparison of six parameters

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To compare six different parameters described in literature for estimation of pelvic tilt on an anteroposterior pelvic radiograph and to create a simple nomogram for tilt correction of prosthetic cup version in total hip arthroplasty.

Design

Simultaneous anteroposterior and lateral pelvic radiographs are taken routinely in our institution and were analyzed prospectively. The different parameters (including three distances and three ratios) were measured and compared to the actual pelvic tilt on the lateral radiograph using simple linear regression analysis.

Patients

One hundred and four consecutive patients (41 men, 63 women with a mean age of 31.7 years, SD 9.2 years, range 15.7–59.1 years) were studied.

Results

The strongest correlation between pelvic tilt and one of the six parameters for both men and women was the distance between the upper border of the symphysis and the sacrococcygeal joint. The correlation coefficient was 0.68 for men (P<0.001) and 0.61 for women (P<0.001). Based on this linear correlation, a nomogram was created that enables fast, tilt-corrected cup version measurements in clinical routine use.

Conclusion

This simple method for correcting variations in pelvic tilt on plain radiographs can potentially improve the radiologist’s ability to diagnose and interpret malformations of the acetabulum (particularly acetabular retroversion and excessive acetabular overcoverage) and post-operative orientation of the prosthetic acetabulum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Widmer KH. A simplified method to determine acetabular cup anteversion from plain radiographs. J Arthroplasty 2004;19:387–90

    Article  PubMed  Google Scholar 

  2. Fabeck L, Farrokh D, Trolley M, Descamps PY, Gebhart M, Delince P. A method to measure acetabular cup anteversion after total hip replacement. Acta Orthop Belg 1999;65:485–91

    PubMed  CAS  Google Scholar 

  3. Pradhan R. Planar anteversion of the acetabular cup as determined from plain anteroposterior radiographs. J Bone Joint Surg Br 1999;81:431–5

    Article  PubMed  CAS  Google Scholar 

  4. Falliner A, Muhle C, Brossmann J. Acetabular inclination and anteversion in infants using 3D MR imaging. Acta Radiol 2002;43:221–4

    Article  PubMed  CAS  Google Scholar 

  5. Frick SL, Kim SS, Wenger DR. Pre-and postoperative three-dimensional computed tomography analysis of triple innominate osteotomy for hip dysplasia. J Pediatr Orthop 2000;20:116–23

    Article  PubMed  CAS  Google Scholar 

  6. Tannast M, Langlotz U, Siebenrock KA, Wiese M, Bernsmann K, Langlotz F. Anatomic referencing of cup orientation in total hip arthroplasty. Clin Orthop Relat Res 2005;436:144–50

    Article  PubMed  Google Scholar 

  7. Millis MB, Murphy SB. Use of computed tomographic reconstruction in planning osteotomies of the hip. Clin Orthop Relat Res 1992;274:154–9

    PubMed  Google Scholar 

  8. Saxler G, Marx A, Vandevelde D, et al. A comparison of free-hand and computer assisted cup placement in total hip arthroplasty-a multi-center study. Z Orthop Ihre Grenzgeb 2004;142:286–91

    Article  PubMed  CAS  Google Scholar 

  9. Olivecrona H, Weidenhielm L, Olivecrona L, et al. A new method for measuring cup orientation after total hip arthroplasty. Acta Orthop Scand 2004;75:252–60

    Article  PubMed  Google Scholar 

  10. Siebenrock KA, Schöniger R, Ganz R. Anterior femoro-acetabular impingement due to acetabular retroversion and its treatment by periacetabular osteotomy. J Bone Joint Surg Am 2003;85:278–86

    PubMed  Google Scholar 

  11. Mast JW, Brunner RL, Zebrack J. Recognizing acetabular version in the radiographic presentation of hip dysplasia. Clin Orthop Relat Res 2004;418:48–53

    Article  PubMed  Google Scholar 

  12. Reynolds D, Lucac J, Klaue K. Retroversion of the acetabulum. A cause of hip pain. J Bone Joint Surg Br 1999;81:281–8

    Article  PubMed  CAS  Google Scholar 

  13. Murray DW. The definition and measurement of acetabular orientation. J Bone Joint Surg Br 1993;75:228–32

    PubMed  CAS  Google Scholar 

  14. Hassan DM, Johnston GHF, Dust WNC, Watson G, Cassidy D. Radiographic calculation of anteversion in acetabular prosthesis. J Arthroplasty 1995;10:369–72

    Article  PubMed  CAS  Google Scholar 

  15. Thoren B, Sahlstedt B. Influence of pelvic position on radiographic measurements of the prosthetic acetabular component. Acta Radiol 1990;31:133–6

    PubMed  CAS  Google Scholar 

  16. Sellers RG, Lyles D, Dorr LD. The effect of pelvic rotation on alpha and theta angles in total hip arthroplasty. Contemp Orthop 1988;17:67–70

    Google Scholar 

  17. Siebenrock KA, Kalbermatten DF, Ganz R. Effect of pelvic inclination on determination of acetabular retroversion. A study on cadaver pelves. Clin Orthop Relat Res 2003;407:241–8

    Article  PubMed  Google Scholar 

  18. Anda S, Svenningsen S, Groentvedt T, Benum P. Pelvic inclination and spatial orientation of the acetabulum. A radiographic, computed tomographic and clinical investigation. Acta Radiol 1990;31:389–94

    Article  PubMed  CAS  Google Scholar 

  19. Eddine TA, Migaud H, Chantelot C, Cotten A, Fontaine C, Duquennoy A. Variations of pelvic anteversion in the lying and standing positions. Analysis of 24 control subjects and implications for CT measurement of position of a prosthetic cup. Surg Radiol Anat 2001;23:105–10

    Article  PubMed  CAS  Google Scholar 

  20. Ganz R, Parvizi J, Beck M, Leunig M, Nötzli H, Siebenrock KA. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res 2003;417:112–20

    PubMed  Google Scholar 

  21. Nishihara S, Sugano N, Nishii T, Ohzono K, Yoshikawa H. Measurements of pelvic flexion angle using three-dimensional computed tomography. Clin Orthop Relat Res 2003;411:140–51

    Article  PubMed  Google Scholar 

  22. Kojima A, Nakagawa T, Tohkura A. Simulation of acetabular coverage of femoral head using anteroposterior pelvic radiographs. Arch Orthop Trauma Surg 1998;117:330–6

    Article  PubMed  CAS  Google Scholar 

  23. Konishi N, Mieno T. Determination of acetabular coverage of the femoral head with use of a single anteroposterior radiograph. A new computerized technique. J Bone Joint Surg Am 1993;75:1318–33

    PubMed  CAS  Google Scholar 

  24. Katada S, Ando K. A rontgenographic evaluation of the indices for hip dysplasia in children influenced by pelvic tilt. In: Ueno R, Akamatsu N, Itami Y, Tagawa H, Yoshino S, editors. The hip. Clinical studies and basic research. Amsterdam: Excerpta Medica; 1984. p. 137–40

    Google Scholar 

  25. Severin E. Contribution to the knowledge of congenital dislocation of the hip joint: late results of closed reduction and arthrographic studies of recent cases. Acta Chir Scand 1941;84(Suppl 63):1–142

    Google Scholar 

  26. Tönnis D. General radiography of the hip joint. In: Tönnis D, editor. Congenital dysplasia and dislocation of the hip. Berlin Heidelberg New York: Springer; 1987. p. 100–42

    Google Scholar 

  27. Thoms H. Roentgen pelvimetry as a routine prenatal procedure. Am J Obstet Gynecol 1940;40:891–905

    Google Scholar 

  28. Lehmann KJ, Busch HP, Wischnik A, Georgi M. Obstetric pelvimetry using digital image intensifier radiography (in German). Rofo 1989;151:553–7

    PubMed  CAS  Google Scholar 

  29. Chan YH. Correlational analysis (Biostatistics 104). Singapore Med J 2003;44:614–9

    PubMed  CAS  Google Scholar 

  30. McLaren RH. Prosthetic hip angulation. Radiology 1973;107:705–6

    PubMed  CAS  Google Scholar 

  31. Nishihara S, Sugano N, Nakahodo K, et al. Measurements of pelvic tilting angles during total hip arthroplasty using computer navigation system. In: Delp SL, DiGioia AM, Jaramaz B, editors. Medical image computing and computer-assisted intervention, MICCAI 2000, third international conference, Pittsburgh, Pennsylvania, USA. Berlin Heidelberg New York: Springer; 2000. p. 1176–9

    Google Scholar 

  32. Wagner S, Hofstetter W, Chiquet M, et al. Early osteoartritic changes of human femoral head cartilage subsequent to femoro-acetabular impingement. Osteoarthr Cartil 2003;11:508–18

    Article  PubMed  CAS  Google Scholar 

  33. Lierse W. Becken. In: Lanz T, Wachsmuth W, editors. Praktische Anatomie. Berlin Heidelberg New York: Springer; 1984. p. 30–2

    Google Scholar 

  34. Williams PL. The skeleton of the lower limb. In: William PL, Warkick R, Dyson M, Bannister LH, editors. Gray’s anatomy. Edinburgh: Churchill Livingstone; 1989. p. 422–46

    Google Scholar 

Download references

Acknowledgements

Part of this work was funded by the Swiss National Center of Competence in Research “Computer Aided and Image Guided Medical Interventions (Co-Me)”, by a fellowship for prospective researchers of the Swiss National Science Foundation, and by the International Society for Computer Assisted Orthopaedic Surgery (CAOS-International).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Langlotz.

Mathematical derivation of the nomogram

Mathematical derivation of the nomogram

Referring to Fig. 6(a), the relationship between radiological cup version (α), cup abduction (β), and the cup version angle that is projected onto the body’s mid plane (γ), was expressed by Murray as [13]:

$$\tan \;\alpha = \tan \;\gamma \cdot \cos \;\beta $$
(1)
Fig. 6
figure 6

The definitions of cup version (α), cup abduction (β), and the cup version angle that is projected onto the body’s mid plane (γ), are shown (a). A pelvic tilt of δ would lead to a decreased cup version α′ (b)

A change in pelvic tilt (Δδ) would lead to a decreased γ′ angle as follows (Fig. 6b):

$$\gamma \prime = \gamma - \Delta \delta $$
(2)

The resulting radiological cup version γ′ can now be expressed as

$$\tan \;\alpha \prime = \tan \;\gamma \prime \cdot \cos \;\beta = \tan {\left( {\gamma - \Delta \delta } \right)} \cdot \cos \beta $$
(3)

Based on the resulting linear regression model of the present study and subtracting the neutral pelvic tilt of 60° [26, 33, 34] (Fig. 1, Table 1), the relationship between change in pelvic tilt (Δδ) and the vertical distance between the upper border of the symphysis and the mid region of the sacrococcygeal joint (distance A) is

$$\Delta \delta _{m} = \frac{{A + 7.1786}} {{0.1829}} - 60^\circ $$
(4)

for men and

$$\Delta \delta _{f} = \frac{{A + 4.4829}} {{0.1578}} - 60^\circ $$
(5)

for women. Inserting Eqs. 4 and 5 for men and women into Eq. 3 yields the following equations of the corrected radiological anteversion (α′)

$$\alpha \prime _{{\text{m}}} = \operatorname{arc} \;tan{\left( {\tan {\left( {\gamma - \frac{{A + 7.1786}}{{0.1829}} + 60^\circ } \right)}\cos \beta } \right)}$$
(6)

for men and

$$\alpha \prime _{{\text{f}}} = \operatorname{arc} \;tan{\left( {\tan {\left( {\gamma - \frac{{A + 4.4829}}{{0.1578}} + 60^\circ } \right)}\cos \beta } \right)}$$
(7)

for women. The acetabular cup version, measured on a radiograph that is centered to the body’s mid axis, is 5° less than measurements centered over the hip [1]. Therefore, the final formulas for creation of the nomograms are

$$\alpha \prime \prime _{{\text{m}}} = \operatorname{arc} \;tan{\left( {\tan {\left( {\gamma - \frac{{A + 7.1786}}{{0.1829}} + 60^\circ } \right)}\cos \beta } \right)} + 5^\circ $$
(8)

for men and

$$\alpha ^{{\prime \prime }}_{{\text{f}}} = \operatorname{arc} \;tan{\left( {\tan {\left( {\gamma - \frac{{A + 4.4829}}{{0.1578}} + 60^\circ } \right)}\cos \beta } \right)} + 5^\circ $$
(9)

for women.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tannast, M., Murphy, S.B., Langlotz, F. et al. Estimation of pelvic tilt on anteroposterior X-rays—a comparison of six parameters. Skeletal Radiol 35, 149–155 (2006). https://doi.org/10.1007/s00256-005-0050-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-005-0050-8

Keywords

Navigation