Skip to main content
Log in

Comparison of shear wave velocity measurements assessed with two different ultrasound systems in an ex-vivo tendon strain phantom

  • Technical Report
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

The purpose of this study is to compare the reliability of SW velocity measurements of two different ultrasound systems and their correlation with the tangent traction modulus in a non-static tendon strain model.

Materials and Methods

A bovine tendon was fixed in a custom-made stretching device. Force was applied increasing from 0 up to 18 Newton. During each strain state the tangent traction modulus was determined by the stretcher device, and SW velocity (m/s) measurements using a Siemens S3000 and a Supersonic Aixplorer US machine were done for shear modulus (kPa) calculation.

Results

A strong significant positive correlation was found between SW velocity assessed by the two ultrasound systems and the tangent traction modulus (r = 0.827–0.954, p < 0.001), yet all SW velocity-based calculations underestimated the reference tissue tangent modulus. Mean difference of SW velocities with the S3000 was 0.44 ± 0.3 m/s (p = 0.002) and with the Aixplorer 0.25 ± 0.3 m/s (p = 0.034). Mean difference of SW velocity between the two US-systems was 0.37 ± 0.3 m/s (p = 0.012).

Conclusion

In conclusion, SW velocities are highly dependent on mechanical forces in the tendon tissue, but for controlled mechanical loads appear to yield reproducible and comparable measurements using different US systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Golatta M, Schweitzer-Martin M, Harcos A, Schott S, Gomez C, Stieber A, et al. Evaluation of virtual touch tissue imaging quantification, a new shear wave velocity imaging method, for breast lesion assessment by ultrasound. Biomed Res Int. 2014;2014:960262.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Golatta M, Schweitzer-Martin M, Harcos A, Schott S, Junkermann H, Rauch G, et al. Normal breast tissue stiffness measured by a new ultrasound technique: virtual touch tissue imaging quantification (VTIQ). Eur J Radiol. 2013;82(11):e676–679.

    Article  PubMed  Google Scholar 

  3. Kim H, Kim JA, Son EJ, Youk JH. Quantitative assessment of shear-wave ultrasound elastography in thyroid nodules: diagnostic performance for predicting malignancy. Eur Radiol. 2013;23(9):2532–7.

    Article  PubMed  Google Scholar 

  4. Ferraioli G, Parekh P, Levitov AB, Filice C. Shear wave elastography for evaluation of liver fibrosis. J Ultrasound Med: Off J Am Inst Ultrasound Med. 2014;33(2):197–203.

    Article  Google Scholar 

  5. Ferraioli G, Tinelli C, Lissandrin R, Zicchetti M, Bernuzzi S, Salvaneschi L, et al. Ultrasound point shear wave elastography assessment of liver and spleen stiffness: effect of training on repeatability of measurements. Eur Radiol. 2014;24(6):1283–9.

    Article  PubMed  Google Scholar 

  6. Elegbe EC, McAleavey SA. Single tracking location methods suppress speckle noise in shear wave velocity estimation. Ultrason Imaging. 2013;35(2):109–25.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gennisson JL, Deffieux T, Fink M, Tanter M. Ultrasound elastography: principles and techniques. Diagn Interv Imaging. 2013;94(5):487–95.

    Article  PubMed  Google Scholar 

  8. Zhang ZJ, Fu SN. Shear elastic modulus on patellar tendon captured from supersonic shear imaging: correlation with tangent traction modulus computed from material testing system and test-retest reliability. PLoS ONE. 2013;8(6), e68216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carlsen JF, Pedersen MR, Ewertsen C, Saftoiu A, Lonn L, Rafaelsen SR, et al. A comparative study of strain and shear-wave elastography in an elasticity phantom. AJR Am J Roentgenol. 2015;204(3):W236–242.

    Article  PubMed  Google Scholar 

  10. Dillman JR, Chen S, Davenport MS, Zhao H, Urban MW, Song P, et al. Superficial ultrasound shear wave speed measurements in soft and hard elasticity phantoms: repeatability and reproducibility using two ultrasound systems. Pediatr Radiol. 2015;45(3):376–85.

    Article  PubMed  Google Scholar 

  11. Carpenter EL, Lau HA, Kolodny EH, Adler RS. Skeletal muscle in healthy subjects versus those with GNE-related myopathy: evaluation with shear-wave US—a pilot study. Radiology. 2015. doi:10.1148/radiol.2015142212.

    PubMed  Google Scholar 

  12. Chen XM, Cui LG, He P, Shen WW, Qian YJ, Wang JR. Shear wave elastographic characterization of normal and torn Achilles tendons: a pilot study. J Ultrasound Med: Off J Am Inst Ultrasound Med. 2013;32(3):449–55.

    Google Scholar 

  13. Akagi R, Kusama S. Comparison between neck and shoulder stiffness determined by shear wave ultrasound elastography and a muscle hardness meter. Ultrasound Med Biol. 2015;41(8):2266–71.

    Article  PubMed  Google Scholar 

  14. Yoshitake Y, Takai Y, Kanehisa H, Shinohara M. Muscle shear modulus measured with ultrasound shear-wave elastography across a wide range of contraction intensity. Muscle Nerve. 2014;50(1):103–13.

    Article  PubMed  Google Scholar 

  15. Sharma P, Maffulli N. Current concepts review tendon injury and tendinopathy: healing and repair. J Bone Joint Surg Am. 2005;87A(1):187–202.

    Article  Google Scholar 

  16. Dewall RJ, Jiang J, Wilson JJ, Lee KS. Visualizing tendon elasticity in an ex vivo partial tear model. Ultrasound Med Biol. 2014;40(1):158–67.

    Article  PubMed  Google Scholar 

  17. Buck AR, Verstraete N, Li Y, Schweizer A, Snedeker JG, Buck FM. Detection of small tendon lesions by sonoelastographic visualization of strain profile differences: initial experiences. Skelet Radiol. 2012;41(9):1073–9.

    Article  Google Scholar 

  18. Aubry S, Nueffer JP, Tanter M, Becce F, Vidal C, Michel F. Viscoelasticity in Achilles tendonopathy: quantitative assessment by using real-time shear-wave elastography. Radiology. 2015;274(3):821–9.

    Article  PubMed  Google Scholar 

  19. Helfenstein-Didier C, Andrade RJ, Brum J, Hug F, Tanter M, Nordez A, et al. In vivo quantification of the shear modulus of the human Achilles tendon during passive loading using shear wave dispersion analysis. Phys Med Biol. 2016;61(6):2485–96.

    Article  CAS  PubMed  Google Scholar 

  20. Ianculescu V, Ciolovan LM, Dunant A, Vielh P, Mazouni C, Delaloge S, et al. Added value of Virtual Touch IQ shear wave elastography in the ultrasound assessment of breast lesions. Eur J Radiol. 2014;83(5):773–7.

    Article  PubMed  Google Scholar 

  21. Bavu E, Gennisson JL, Couade M, Bercoff J, Mallet V, Fink M, et al. Noninvasive in vivo liver fibrosis evaluation using supersonic shear imaging: a clinical study on 113 hepatitis C virus patients. Ultrasound Med Biol. 2011;37(9):1361–73.

    Article  PubMed  Google Scholar 

  22. Athanasiou A, Tardivon A, Tanter M, Sigal-Zafrani B, Bercoff J, Deffieux T, et al. Breast lesions: quantitative elastography with supersonic shear imaging—preliminary results. Radiology. 2010;256(1):297–303.

    Article  PubMed  Google Scholar 

  23. Barr RG, Memo R, Schaub CR. Shear wave ultrasound elastography of the prostate: initial results. Ultrasound Q. 2012;28(1):13–20.

    Article  PubMed  Google Scholar 

  24. Arda K, Ciledag N, Aktas E, Aribas BK, Kose K. Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography. AJR Am J Roentgenol. 2011;197(3):532–6.

    Article  PubMed  Google Scholar 

  25. Aubry S, Risson JR, Kastler A, Barbier-Brion B, Siliman G, Runge M, et al. Biomechanical properties of the calcaneal tendon in vivo assessed by transient shear wave elastography. Skelet Radiol. 2013;42(8):1143–50.

    Article  Google Scholar 

  26. Ruan Z, Zhao B, Qi H, Zhang Y, Zhang F, Wu M, et al. Elasticity of healthy Achilles tendon decreases with the increase of age as determined by acoustic radiation force impulse imaging. Int J Clin Exp Med. 2015;8(1):1043–50.

    PubMed  PubMed Central  Google Scholar 

  27. Hsiao MY, Chen YC, Lin CY, Chen WS, Wang TG. Reduced patellar tendon elasticity with aging: in vivo assessment by shear wave elastography. Ultrasound Med Biol. 2015;41(11):2899–905.

    Article  PubMed  Google Scholar 

  28. Peltz CD, Haladik JA, Divine G, Siegal D, van Holsbeeck M, Bey MJ. ShearWave elastography: repeatability for measurement of tendon stiffness. Skelet Radiol. 2013;42(8):1151–6.

    Article  CAS  Google Scholar 

  29. Hansen KA, Weiss JA, Barton JK. Recruitment of tendon crimp with applied tensile strain. J Biomech Eng. 2002;124(1):72–7.

    Article  PubMed  Google Scholar 

  30. Sharma P, Maffulli N. Tendon injury and tendinopathy: healing and repair. J Bone Joint Surg Am. 2005;87(1):187–202.

    Article  PubMed  Google Scholar 

  31. Maganaris CN, Paul JP. In vivo human tendon mechanical properties. J Physiol. 1999;521(Pt 1):307–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ker RF. Mechanics of tendon, from an engineering perspective. Int J Fatigue. 2007;29:9.

    Article  Google Scholar 

  33. Wu JJ. Quantitative constitutive behaviour and viscoelastic properties of fresh flexor tendons. Int J Artif Organs. 2006;29(9):852–7.

    CAS  PubMed  Google Scholar 

  34. Yamamoto E, Hayashi K, Yamamoto N. Effects of stress shielding on the transverse mechanical properties of rabbit patellar tendons. J Biomech Eng. 2000;122(6):608–14.

    Article  CAS  PubMed  Google Scholar 

  35. Lynch HA, Johannessen W, Wu JP, Jawa A, Elliott DM. Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon. J Biomech Eng. 2003;125(5):726–31.

    Article  PubMed  Google Scholar 

  36. Pelled G, Snedeker JG, Ben-Arav A, Rigozzi S, Zilberman Y, Kimelman-Bleich N, et al. Smad8/BMP2-engineered mesenchymal stem cells induce accelerated recovery of the biomechanical properties of the Achilles tendon. J Orthop Res. 2012;30(12):1932–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang ZJ, Ng GY, Lee WC, Fu SN. Changes in morphological and elastic properties of patellar tendon in athletes with unilateral patellar tendinopathy and their relationships with pain and functional disability. PLoS ONE. 2014;9(10), e108337.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea B. Rosskopf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosskopf, A.B., Bachmann, E., Snedeker, J.G. et al. Comparison of shear wave velocity measurements assessed with two different ultrasound systems in an ex-vivo tendon strain phantom. Skeletal Radiol 45, 1541–1551 (2016). https://doi.org/10.1007/s00256-016-2470-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-016-2470-z

Keywords

Navigation