Skip to main content

Advertisement

Log in

FDG-PET: procedure guidelines for tumour imaging

  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Essential references

  1. Asenbaum S. Guideline for the use of FDG PET in neurology and psychiatry. Austrian Society of Nuclear Medicine, 2001:www.ogn.at.

  2. Bailey DL. Transmission scanning in emission tomography. Eur J Nucl Med 1998; 25:774–787.

    Article  CAS  PubMed  Google Scholar 

  3. Bar-Shalom R, Yefremov N, Guralnik L, et al. Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J Nucl Med 2003; 44:1200–1209.

    PubMed  Google Scholar 

  4. Bartenstein P, Asenbaum S, Catafau A, et al. European Association of Nuclear Medicine procedure guidelines for brain imaging using [18F]FDG. Eur J Nucl Med Mol Imaging 2002; 29:BP43–48.

    CAS  Google Scholar 

  5. Baum RP, Przetak C Evaluation of therapy response in breast and ovarian cancer by PET. Q J Nucl Med 2001; 45:257–268.

    CAS  PubMed  Google Scholar 

  6. Beaulieu S, Kinahan P, Tseng J, et al. SUV varies with time after injection in (18)F-FDG PET of breast cancer: characterization and method to adjust for time differences. J Nucl Med 2003; 44:1044–1050.

    PubMed  Google Scholar 

  7. Bertoldo A, Peltoniemi P, Oikonen V, et al. Kinetic modelling of (18)F-FDG in skeletal muscle by PET: a four-compartment five-rate-constant model. Am J Physiol Endocrinol Metab 2001; 281:E524–E536.

    CAS  PubMed  Google Scholar 

  8. Beyer T, Townsend DW, Brun T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000; 41:1369–1379.

    CAS  PubMed  Google Scholar 

  9. Bleckmann CB, Dose J, Bohuslavizki KH, et al. Effect of attenuation correction on lesion detectability in FDG-PET of breast cancer. J Nucl Med 1999; 40:2021–2024.

    PubMed  Google Scholar 

  10. Bombardieri E, Crippa F. The increasing impact of PET in the diagnostic work-up of cancer patients. In: Freeman LM, ed. Nuclear medicine annual. Philadelphia: Lippincott; 2002:75–121.

  11. Boren EL, Delbeke D, Patton JA, et al. Imaging of lung cancer with fluorine-18 fluorodeoxyglucose: comparison of a dual-head camera in coincidence mode with a full-ring positron emission tomography system. Eur J Nucl Med 1999; 26:388–395.

    CAS  PubMed  Google Scholar 

  12. Bourguet P, Group de Travail SOR. Standards, options and recommendations 2002 for the use of positron emission tomography with (18)F-FDG (PET-FDG) in cancerlogy (integral connection). Bull Cancer 2003; 90: S5–S17.

    PubMed  Google Scholar 

  13. Buchert R, Bohuslavizki KH, Mester J, et al. Quality assurance in PET: evaluation of the clinical relevance of detector defects. J Nucl Med 1999; 40:1657–1665.

    CAS  PubMed  Google Scholar 

  14. Buchert R, Bohuslavizki KH, Fricke H, et al. Performance evaluation of PET scanners: testing of geometric arc correction by off-centre uniformity measurement. Eur J Nucl Med 2000; 27:83–90.

    CAS  PubMed  Google Scholar 

  15. Burger C, Goerres G, Schoenes S, et al. PET attenuation from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 2002; 29:922–927.

    Article  CAS  PubMed  Google Scholar 

  16. Chen CH, Muzie RF, Nelson AD Jr., et al. Simultaneous recovery of size and radioactivity concentration of small spheroids with PET data. J Nucl Med 1999; 40:118–130.

    CAS  PubMed  Google Scholar 

  17. Choi Y, Brunken RC, Hawkins RA, et al. Factors affecting myocardial 2-(F-18) fluoro-2-deoxy-d-glucose uptake in positron emission tomography studies of normal humans. Eur J Nucl Med 1993; 20:308–318.

    CAS  PubMed  Google Scholar 

  18. Conti PS. Introduction to imaging brain tumor metabolism with positron emission tomography (PET). Cancer Invest 1995; 13:244–259.

    CAS  PubMed  Google Scholar 

  19. Cook GJ, Maisey MN, Fogelman I. Normal variants, artefacts and interpretative pitfalls in PET imaging with 18-fluoro-2-deoxyglucose and carbon-11 methionine. Eur J Nucl Med 1999; 26:1363–1378.

    Article  CAS  PubMed  Google Scholar 

  20. Delbeke D. Oncological applications of FDG-PET imaging: brain tumors, colorectal cancer, lymphoma and melanoma. J Nucl Med 1999; 40:591–603.

    CAS  PubMed  Google Scholar 

  21. Delbeke D. Onoclogical applications of FDG-PET imaging. J Nucl Med 1999; 40:1706–1715.

    CAS  PubMed  Google Scholar 

  22. Delgado-Bolton RC, Fernandez-Perez C, Gonzales-Mate A, et al. Meta-analysis of the performance of (18)F-FDG PET in primary tumor detection in unknown primary tumours. J Nucl Med 2003; 44:1301–1314.

    PubMed  Google Scholar 

  23. Deloar HM, Fuiwara T, Shidahara M, et al. Estimation of absorbed dose for 2-(F-18)fluoro-2-deoxy-d-glucose using whole-body positron emission tomography and magnetic resonance imaging. Eur J Nucl Med 1998; 25:565–574.

    Article  CAS  PubMed  Google Scholar 

  24. Diederichs CG, Staib L, Glatting G, et al. FDG PET: Elevated plasma glucose reduces both uptake and detection rate of pancreatic malignancies. J Nucl Med 1998; 39:1030–1033.

    CAS  PubMed  Google Scholar 

  25. Duhaylongsod FG, Lowe VJ, Patz EF Jr, et al. Detection of primary and recurrent lung cancer by means of F-18 fluorodeoxyglucose positron emission tomography (FDG PET). J Thorac Cardiovasc Surg 1995; 110:130–139.

    CAS  PubMed  Google Scholar 

  26. Ell PJ, Von Schulthess GK. PET/CT a new road map. Eur J Nucl Med Mol Imaging 2002; 29:719–720.

    Article  PubMed  Google Scholar 

  27. Engel H, Steinert H, Buck A, et al. Whole-body PET: physiologic and artifactual fluorodeoxyglucose accumulations. J Nucl Med 1996; 37:441–446.

    CAS  PubMed  Google Scholar 

  28. Faulhaber PF, Mehta l, Echt EA, et al. Perfecting the practice of FDG-PET: pitfalls and artefacts. In: Freeman LM, ed. Nuclear medicine annual. Philadelphia: Lippincott; 2002:149–214.

  29. Flamen P, Van Cutsem V, Mortelsman L. A new imaging technique for colorectal cancer: positron emission tomography. Semin Oncol 2000; 27:22–29.

    CAS  Google Scholar 

  30. Flamen P, Hoekstra OS, Homans F, et al. Unexplained rising CEA in the postoperative surveillance of colorectal cancer: the utility of PET. Eur J Cancer 2001; 37:862–869.

    Article  CAS  PubMed  Google Scholar 

  31. Gambhir SS, Czernin J, Schwimmer J, et al. A tabulated summary of the FDG PET literature. J Nucl Med 2001; 42:1S–93S.

    CAS  PubMed  Google Scholar 

  32. Griffeth LK, Dehdashti F, McGuire AH, et al. PET evaluation of soft-tissue masses with fluorine-18-fluoro-2-deoxy-d-glucose. Radiology 1992; 182:185–194.

    CAS  PubMed  Google Scholar 

  33. Hallett WA, Marsden PK, Cronin BF, et al. Effect of corrections for blood glucose and body size on [18F]FDG-PET standardised uptake values in lung cancer. Eur J Nucl Med 2001; 28:919–922.

    Google Scholar 

  34. Hoekstra CJ, Hoekstra OS, Lammertsma AA. On the use of image-derived input functions in oncological fluorine-18 fluorodeoxyglucose positron emission tomography studies. Eur J Nucl Med 2000; 27:214.

    Article  Google Scholar 

  35. Hoh CK, Schiepers C, Seitzer MA, et al. PET in oncology: Will it replace the other modalities? Semin Nucl Med 1997; 27:94–106.

    CAS  PubMed  Google Scholar 

  36. Hustinx R, Smith RJ, Benard F, et al. Can the standardized uptake value characterize primary brain tumors on FDG-PET? Eur J Nucl Med 1999; 26:1501–1509.

    Article  CAS  PubMed  Google Scholar 

  37. Hustinx R, Dolin RJ, Benard F, et al. Impact of attenuation correction on the accuracy of FDG-PET in patients with abdominal tumors: a free-response ROC analysis. Eur J Nucl Med 2000; 27:1365–1371.

    Article  CAS  PubMed  Google Scholar 

  38. ICRP Publication 53. Radiation dose to patients from radiopharmaceuticals. Ann ICRP 1987; 18:1–4.

    PubMed  Google Scholar 

  39. ICRP Publication 62. Radiological protection in biomedical research. Ann ICRP 1991; 22:3.

    Google Scholar 

  40. ICRP Publication 80. Radiation dose to patients from radiopharmaceuticals. Ann ICRP 1998; 28:3.

    PubMed  Google Scholar 

  41. Knapp WH. Guidelines for tumor diagnosis with F-18-fluorodeoxyglucose (FDG). Nuklearmedizin 1999; 38:267–269.

    CAS  PubMed  Google Scholar 

  42. Kotzerke J, Guhlmann A, Moog F, et al. Role of attenuation correction for fluorine-18 fluorodeoxyglucose positron emission tomography in the primary staging of malignant lymphoma. Eur J Nucl Med 1999; 26:31–38.

    CAS  PubMed  Google Scholar 

  43. Kunze WD, Baehre M, Richter E. PET with a dual-head coincidence camera: spatial resolution, scatter fraction, and sensitivity. J Nucl Med 2000; 41:1067–1074.

    CAS  PubMed  Google Scholar 

  44. Lartizien C, Comtat C, Kinahan PE, Ferreira N, Bendriem B, Trebossen R. Optimization of injected dose based on noise equivalent count rates for 2- and 3-dimensional whole body PET. J Nucl Med 2002; 43:1268–1278.

    PubMed  Google Scholar 

  45. Lindholm P, Minn H, Leskinen-Kallio S, et al. Influence of the blood glucose concentration on FDG uptake in cancer—a PET study. J Nucl Med 1993; 34:1–6.

    CAS  PubMed  Google Scholar 

  46. Links JM. Advances in nuclear medicine instrumentation: considerations in the design and selection of an imaging system. Eur J Nucl Med 1998; 25:1453–1466.

    Article  CAS  PubMed  Google Scholar 

  47. Margery J, Bonaerdel G, Vaylet F, Guigay J, Gaillard JF, L’Her P. New dietary guidelines before FDG-PET, or how to simply improve validity. Rev Pneumol Clin 2002; 58:359.

    CAS  PubMed  Google Scholar 

  48. Mandelkern M, Rainers J. Positron emission tomography in cancer research and treatment. Technol Cancer Res Treat 2002; 1:426–439.

    Google Scholar 

  49. Moran JK, Lee BK, Blaufox MD. Optimization of urinary FDG excretion during PET imaging. J Nucl Med 1999; 40:1352–1357.

    CAS  PubMed  Google Scholar 

  50. Patton JA, Turkington TG. Coincidence imaging with a dual-head scintillation camera. J Nucl Med 1999; 40:435–441.

    Google Scholar 

  51. Patton JA, Sandler MP, Ohana I, et al. High-energy (511 keV) imaging with the scintillation camera. Radiographics 1996; 16:1183–1194.

    CAS  PubMed  Google Scholar 

  52. Price P, Jones T. Can positron emission tomography (PET) be used to detect subclinical response to cancer therapy? Eur J Cancer 1995; 31A:1924–1927.

    CAS  PubMed  Google Scholar 

  53. Ramos CD, Erdi Y, Gonen M, et al. FDG-PET standardized uptake values in normal anatomical structures using iterative reconstruction segmented attenuation correction and filtered back-projection. Eur J Nucl Med 2001; 28:155–164.

    Article  CAS  PubMed  Google Scholar 

  54. Raylman RR, Kison PV, Wahl RL. Capabilities of two- and three-dimensional FDG-PET for detecting small lesions and lymph nodes in the upper torso: a dynamic phantom study. Eur J Nucl Med 1999; 26:39–45.

    Article  CAS  PubMed  Google Scholar 

  55. Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med 1998; 39:904–911.

    CAS  PubMed  Google Scholar 

  56. Sandell A, Ohlsson T, Erlandsson K, et al. An alternative method to normalize clinical FDG studies. J Nucl Med 1998; 39:552–555.

    CAS  PubMed  Google Scholar 

  57. Schelbert HR, Hoh CK, Royal HD, Brown M, Dahlbom MN, Dehdas F, Wahl RL. Procedure guideline for tumor imaging using fluorine-18-FDG. J Nucl Med 1998; 39:1302–1305.

    CAS  PubMed  Google Scholar 

  58. Shreve PD, Stevenson RS, Deters EC, et al. Oncologic diagnosis with 2(fluorine-18)fluoro-2-deoxy-glucose imaging: dual-head coincidence gamma camera versus positron emission tomographic scanner. Radiology 1998; 207:431–437.

    CAS  PubMed  Google Scholar 

  59. Society of Nuclear Medicine Brain Imaging Council. Ethical clinical practice of functional brain imaging. J Nucl Med 1996; 37:1256–1259.

    PubMed  Google Scholar 

  60. Spaepen K, Stroobants S, Dupont P, Bormans G, Balzarini J, Verhoef G, Mortelmans L, Vandenberghe P, De Wolf-Peeters C.18F-FDG-PET monitoring of tumour response to chemotherapy: does 18F-FDG uptake correlated with the viable tumour cell fraction? Eur J Nucl Med Mol Imaging 2003; 30:682–688.

    CAS  PubMed  Google Scholar 

  61. Stumpe KDM, Dazzi H, Schaffner A, et al. Infection imaging using whole-body FDG-PET. Eur J Nucl Med 2000; 27:822–832.

    Article  CAS  PubMed  Google Scholar 

  62. Sugiura M, Kawashima R, Sadato N, et al. Anatomic validation of spatial normalization methods for PET. J Nucl Med 1999; 40:317–322.

    CAS  PubMed  Google Scholar 

  63. Torizuka T, Fisher SJ, Wahl RL. Insulin-induced hypoglycemia decreases uptake of 2-(F-18)-fluoro-2-deoxy-d-glucose into experimental mammary carcinoma. Radiology 1997; 203:169–172.

    CAS  PubMed  Google Scholar 

  64. Weber WA, Ziegler SI, Thodtmann R, et al. Reproducibility of metabolic measurements in malignant tumors using FDG-PET. J Nucl Med 1999; 40:1771–1777.

    CAS  PubMed  Google Scholar 

  65. Weinzapfel BT, Hutchins GD. Automated PET attenuation correction model for functional brain imaging. J Nucl Med 2001; 42:483–491.

    CAS  PubMed  Google Scholar 

  66. Xu M, Luk WK, Culter PD, et al. Local threshold for segmented attenuation correction of PET imaging of the thorax. IEEE Trans Nucl Sci 1994; 41:1532–1537.

    Article  Google Scholar 

  67. Zhao S, Kuge Y, Tsukamoto E, et al. Effects of insulin and glucose loading on FDG uptake in experimental malignant tumours and inflammatory lesions. Eur J Nucl Med 2001; 28:730–735.

    Google Scholar 

Download references

Acknowledgements

The authors thanks Ms. Annaluisa De Simone Sorrentino and Ms. Marije de Jager for their valuable editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Bombardieri.

Additional information

Under the auspices of the Oncology Committee of the European Association of Nuclear Medicine.

Referees: Bardies M. (INSERM U463, Nantes Cedex, France), Bull U. (Department of Nuclear Medicine, University of Aachen, Germany), Cremerius U. (Department of Nuclear Medicine, University of Aachen, Germany), Chiesa C. (Division of Nuclear Medicine, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milano, Italia), Crippa F. (Division of Nuclear Medicine, PET Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milano, Italy), Fazio F. (Division of Nuclear Medicine- PET Center, Istituto Scientifico Ospedale San Raffaele, Milano, Italy), Flux G. (Department Physics, Royal Marsden Hospital, London, UK), Langstrom B. (PET Center, University, Uppsala, Sweden), Lassmann M. (Klinik für Nuklearmedizin, University of Würzburg, Germany), Lucignani G. (Division of Nuclear Medicine, University, Milano, Italy), Maisey M.N. (Guys and St. Thomas Clinical PET Centre, London, UK), Mather S.J. (Department of Nuclear Medicine, St. Bartholomew’s Hospital, London, UK), Pruim J. (PET Center, University Hospital, Groningen, The Netherlands), Rigo P. (Division of Nuclear Medicine, University Hospital of Liege, Belgium), Strauss L. (Medical PET Group, German Cancer Research Center, Heidelberg, Germany), von Schulthess G. (PET Center, University, Zurich, Switzerland), Vaalburg W. (PET Center, University Hospital, Groningen, The Netherlands).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bombardieri, E., Aktolun, C., Baum, R.P. et al. FDG-PET: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 30, B115–B124 (2003). https://doi.org/10.1007/s00259-003-1355-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-003-1355-2

Keywords

Navigation