Skip to main content
Log in

Comparison of calculated and acquired high b value diffusion-weighted imaging in prostate cancer

Abdominal Imaging Aims and scope Submit manuscript

Abstract

Purpose

To determine whether the performance of calculated high b value diffusion-weighted images (DWI) derived from regular lower b value DWI using exponential diffusion decay models (intravoxel incoherent motion = IVIM and diffusional kurtosis = DK) is comparable to acquired high b value DWI in prostate cancer detection.

Materials and Methods

One hundred six patients underwent diagnostic multiparametric prostate MRI at 3T using an endorectal coil. Five b value (b = 0, 188, 375, 563, 750 s/mm2) DWI and high b value (b = 0, 1000 and 2000 s/mm2) DWI were acquired. Calculated high b value (b = 1000 s/mm2 and b = 2000 s/mm2) DWI were derived from the DWI dataset using DK and IVIM models. Calculated and acquired high b value DWI images were compared for lesion visibility and image quality by two experienced radiologists (1 and 6 years of experience). GEE with Wald test was used to compare the image quality among the four calculated high b value DWI by comparing the proportion of lesions in each model which were comparable to the acquired images. This comparison was done for all lesions and by lesion location (PZ or CG; low apical/anterior or apical/mid/base)

Results

More lesions were visible on acquired b = 2000 s/mm2 compared to b = 1000 s/mm2 DWI. Calculated high b value DWI using the IVIM model had approximately the same number of lesions as acquired high b value DWI, whereas the DK model had fewer lesions than acquired images. The image quality of calculated high b value DWI was comparable to that of acquired images, and the highest quality images were obtained with b1000IVIM. The image quality of calculated b1000IVIM was the same as that of acquired DWI in apical/mid/base (98%) locations and comparable in low apical and anterior (95.4%) locations. The image quality of calculated b2000IVIM was inferior in both apical/mid/base (86.2%) locations and comparable in low apical and anterior (83.9%) locations.

Conclusion

Calculated high b value DWI obtained using IVIM model has same lesion visibility as that of acquired DWI. The image quality of calculated high b value DWI relative to corresponding acquired DWI decreases with increase in b value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bonekamp D, Jacobs MA, El-Khouli R, Stoianovici D, Macura KJ (2011) Advancements in MR imaging of the prostate: from diagnosis to interventions. Radiographics 31(3):677–703. doi:10.1148/rg.313105139.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Thompson J, Lawrentschuk N, Frydenberg M, et al. (2013) The role of magnetic resonance imaging in the diagnosis and management of prostate cancer. BJU Int 112(Suppl 2):6–20. doi:10.1111/bju.12381.

    Article  PubMed  Google Scholar 

  3. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42(1):288–292. doi:10.1063/1.1695690

  4. Pang Y, Turkbey B, Bernardo M, et al. (2012) Intravoxel incoherent motion MR imaging for prostate cancer: an evaluation of perfusion fraction and diffusion coefficient derived from different b-value combinations. Magn Reson Med . doi:10.1002/mrm.24277.

    Google Scholar 

  5. Jensen JH, Helpern JA (2010) MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed 23(7):698–710. doi:10.1002/nbm.1518.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Itou Y, Nakanishi K, Narumi Y, Nishizawa Y, Tsukuma H (2011) Clinical utility of apparent diffusion coefficient (ADC) values in patients with prostate cancer: can ADC values contribute to assess the aggressiveness of prostate cancer? J Magn Reson Imaging 33(1):167–172. doi:10.1002/jmri.22317.

    Article  PubMed  Google Scholar 

  7. Turkbey B, Shah VP, Pang Y, et al. (2011) Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology 258(2):488–495. doi:10.1148/radiol.10100667.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Hambrock T, Somford DM, Huisman HJ, van Oort IM, Witjes JA, Hulsbergen-van de Kaa CA, Scheenen T, Barentsz JO (2011) Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology 259(2):453–461. doi:10.1148/radiol.11091409.

  9. Vargas HA, Akin O, Franiel T, et al. (2011) Diffusion-weighted endorectal MR imaging at 3 T for prostate cancer: tumor detection and assessment of aggressiveness. Radiology 259(3):775–784. doi:10.1148/radiol.11102066.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Kobus T, Vos PC, Hambrock T, et al. (2012) Prostate cancer aggressiveness: in vivo assessment of MR spectroscopy and diffusion-weighted imaging at 3 T. Radiology 265(2):457–467. doi:10.1148/radiol.12111744.

    Article  PubMed  Google Scholar 

  11. Le Bihan D, Breton E, Lallemand D, et al. (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168(2):497–505.

    Article  PubMed  Google Scholar 

  12. DeCarlo LT (1997) On the meaning and use of kurtosis. Psychol Methods 2(3):292–307.

    Article  Google Scholar 

  13. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K (2005) Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53(6):1432–1440. doi:10.1002/mrm.20508.

    Article  PubMed  Google Scholar 

  14. Rosenkrantz AB, Sigmund EE, Johnson G, et al. (2012) Prostate cancer: feasibility and preliminary experience of a diffusional kurtosis model for detection and assessment of aggressiveness of peripheral zone cancer. Radiology 264(1):126–135. doi:10.1148/radiol.12112290.

    Article  PubMed  Google Scholar 

  15. Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, Dzik-Jurasz A, Ross BD, Van Cauteren M, Collins D, Hammoud DA, Rustin GJ, Taouli B, Choyke PL (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11(2):102–125.

  16. Kitajima K, Kaji Y, Kuroda K, Sugimura K (2008) High b-value diffusion-weighted imaging in normal and malignant peripheral zone tissue of the prostate: effect of signal-to-noise ratio. Magn Reson Med Sci 7(2):93–99.

    Article  PubMed  Google Scholar 

  17. Katahira K, Takahara T, Kwee TC, et al. (2011) Ultra-high-b-value diffusion-weighted MR imaging for the detection of prostate cancer: evaluation in 201 cases with histopathological correlation. Eur Radiol 21(1):188–196. doi:10.1007/s00330-010-1883-7.

    Article  PubMed  Google Scholar 

  18. Kim CK, Park BK, Kim B (2010) High-b-value diffusion-weighted imaging at 3 T to detect prostate cancer: comparisons between b values of 1000 and 2000 s/mm2. Am J Roentgenol 194(1):W33–W37. doi:10.2214/ajr.09.3004.

    Article  Google Scholar 

  19. Metens T, Miranda D, Absil J, Matos C (2012) What is the optimal b value in diffusion-weighted MR imaging to depict prostate cancer at 3T? Eur Radiol 22(3):703–709. doi:10.1007/s00330-011-2298-9.

    Article  CAS  PubMed  Google Scholar 

  20. Kitajima K, Takahashi S, Ueno Y, et al. (2012) Clinical utility of apparent diffusion coefficient values obtained using high b-value when diagnosing prostate cancer using 3 tesla MRI: comparison between ultra-high b-value (2000 s/mm2) and standard high b-value (1000 s/mm2). J Magn Reson Imaging 36(1):198–205. doi:10.1002/jmri.23627.

    Article  PubMed  Google Scholar 

  21. Koo JH, Kim CK, Choi D, et al. (2013) Diffusion-weighted magnetic resonance imaging for the evaluation of prostate cancer: optimal B value at 3T. Korean J Radiol 14(1):61–69. doi:10.3348/kjr.2013.14.1.61.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Ohgiya Y, Suyama J, Seino N, et al. (2012) Diagnostic accuracy of ultra-high-b-value 3.0-T diffusion-weighted MR imaging for detection of prostate cancer. Clin Imaging 36(5):526–531. doi:10.1016/j.clinimag.2011.11.016.

    Article  PubMed  Google Scholar 

  23. Ueno Y, Kitajima K, Sugimura K, Kawakami F, Miyake H, Obara M, Takahashi S (2013) Ultra-high b-value diffusion-weighted MRI for the detection of prostate cancer with 3-T MRI. J Magn Reson Imaging. doi:10.1002/jmri.23953

  24. Rosenkrantz AB, Hindman N, Lim RP, Das K, Babb JS, Mussi TC, Taneja SS (2013) Diffusion-weighted imaging of the prostate: Comparison of b1000 and b2000 image sets for index lesion detection. J Magn Reson Imaging. doi:10.1002/jmri.24016.

  25. Blackledge MD, Leach MO, Collins DJ, Koh DM (2011) Computed diffusion-weighted MR imaging may improve tumor detection. Radiology 261(2):573–581. doi:10.1148/radiol.11101919.

    Article  PubMed  Google Scholar 

  26. Turkbey B, Xu S, Kruecker J, et al. (2011) Documenting the location of prostate biopsies with image fusion. BJU Int 107(1):53–57. doi:10.1111/j.1464-410X.2010.09483.x.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Xu S, Kruecker J, Turkbey B, et al. (2008) Real-time MRI-TRUS fusion for guidance of targeted prostate biopsies. Comput Aided Surg 13(5):255–264. doi:10.3109/10929080802364645.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Sciarra A, Barentsz J, Bjartell A, Eastham J, Hricak H, Panebianco V, Witjes JA (2011) Advances in magnetic resonance imaging: how they are changing the management of prostate cancer. Eur Urol 59(6):962–977. doi:10.1016/j.eururo.2011.02.034.

  29. Maas MC, Futterer JJ, Scheenen TW (2013) Quantitative evaluation of computed high B value diffusion-weighted magnetic resonance imaging of the prostate. Investigative radiology 48(11):779–786. doi:10.1097/RLI.0b013e31829705bb.

    Article  PubMed  Google Scholar 

  30. Rosenkrantz AB, Chandarana H, Hindman N, et al. (2013) Computed diffusion-weighted imaging of the prostate at 3 T: impact on image quality and tumour detection. Eur Radiol . doi:10.1007/s00330-013-2917-8.

    Google Scholar 

  31. Ueno Y, Takahashi S, Kitajima K, et al. (2013) Computed diffusion-weighted imaging using 3-T magnetic resonance imaging for prostate cancer diagnosis. Eur Radiol 23(12):3509–3516. doi:10.1007/s00330-013-2958-z.

    Article  PubMed  Google Scholar 

  32. Siddiqui MM, Rais-Bahrami S, Truong H, et al. (2013) Magnetic resonance imaging/ultrasound-fusion biopsy significantly upgrades prostate cancer versus systematic 12-core transrectal ultrasound biopsy. Eur Urol . doi:10.1016/j.eururo.2013.05.059.

    Google Scholar 

  33. Pokorny MR, de Rooij M, Duncan E, et al. (2014) Prospective study of diagnostic accuracy comparing prostate cancer detection by transrectal ultrasound-guided biopsy versus magnetic resonance (MR) imaging with subsequent mr-guided biopsy in men without previous prostate biopsies. Eur Urol 66(1):22–29.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baris Turkbey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grant, K.B., Agarwal, H.K., Shih, J.H. et al. Comparison of calculated and acquired high b value diffusion-weighted imaging in prostate cancer. Abdom Imaging 40, 578–586 (2015). https://doi.org/10.1007/s00261-014-0246-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-014-0246-2

Keywords

Navigation