Skip to main content
Log in

Machine learning for medical ultrasound: status, methods, and future opportunities

  • Invited article
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Ultrasound (US) imaging is the most commonly performed cross-sectional diagnostic imaging modality in the practice of medicine. It is low-cost, non-ionizing, portable, and capable of real-time image acquisition and display. US is a rapidly evolving technology with significant challenges and opportunities. Challenges include high inter- and intra-operator variability and limited image quality control. Tremendous opportunities have arisen in the last decade as a result of exponential growth in available computational power coupled with progressive miniaturization of US devices. As US devices become smaller, enhanced computational capability can contribute significantly to decreasing variability through advanced image processing. In this paper, we review leading machine learning (ML) approaches and research directions in US, with an emphasis on recent ML advances. We also present our outlook on future opportunities for ML techniques to further improve clinical workflow and US-based disease diagnosis and characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang S, Summers RM (2012) Machine learning and radiology. Med Image Anal 16(5):933–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shen D, Wu G, Suk H-I (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Litjens G et al. (2017) A survey on deep learning in medical image analysis. ArXiv Prepr. ArXiv170205747

  4. Ravi D, et al. (2017) Deep Learning for health informatics. IEEE J Biomed Health Inform 21(1):4–21

    Article  PubMed  Google Scholar 

  5. Cassinotto C, et al. (2014) Non-invasive assessment of liver fibrosis with impulse elastography: comparison of Supersonic Shear Imaging with ARFI and FibroScan®. J. Hepatol. 61(3):550–557

    Article  PubMed  Google Scholar 

  6. Ferraioli G, Parekh P, Levitov AB, Filice C (2014) Shear wave elastography for evaluation of liver fibrosis. J. Ultrasound Med 33(2):197–203

    Article  PubMed  Google Scholar 

  7. Poynard T, et al. (2013) Liver fibrosis evaluation using real-time shear wave elastography: applicability and diagnostic performance using methods without a gold standard. J Hepatol 58(5):928–935

    Article  PubMed  Google Scholar 

  8. Samir AE, et al. (2014) Shear-wave elastography for the estimation of liver fibrosis in chronic liver disease: determining accuracy and ideal site for measurement. Radiology 274(3):888–896

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liu B, et al. (2016) Breast lesions: quantitative diagnosis using ultrasound shear wave elastography—a systematic review and meta-analysis. Ultrasound Med Biol 42(4):835–847

    Article  PubMed  Google Scholar 

  10. Wang M, et al. (2017) Differential diagnosis of breast category 3 and 4 nodules through BI-RADS classification in conjunction with shear wave elastography. Ultrasound Med Biol 43(3):601–606

    Article  PubMed  Google Scholar 

  11. Wang ZL, Li Y, Wan WB, Li N, Tang J (2017) Shear-wave elastography: could it be helpful for the diagnosis of non-mass-like breast lesions? Ultrasound Med Biol 43(1):83–90

    Article  PubMed  Google Scholar 

  12. Anvari A, Dhyani M, Stephen AE, Samir AE (2016) Reliability of shear-wave elastography estimates of the young modulus of tissue in follicular thyroid neoplasms. Am J Roentgenol 206(3):609–616

    Article  Google Scholar 

  13. Dhyani M, Li C, Samir AE, Stephen AE (2017) Elastography: applications and limitations of a new technology. Advanced thyroid and parathyroid ultrasound. New York: Springer, pp 67–73

    Chapter  Google Scholar 

  14. Ding J, Cheng HD, Huang J, Zhang Y, Liu J (2012) An improved quantitative measurement for thyroid cancer detection based on elastography. Eur J Radiol 81(4):800–805

    Article  PubMed  Google Scholar 

  15. Park AY, Son EJ, Han K, et al. (2015) Shear wave elastography of thyroid nodules for the prediction of malignancy in a large scale study. Eur J Radiol 84(3):407–412

    Article  PubMed  Google Scholar 

  16. Eby SF, et al. (2015) Shear wave elastography of passive skeletal muscle stiffness: influences of sex and age throughout adulthood. Clin Biomech 30(1):22–27

    Article  Google Scholar 

  17. Pass B, Jafari M, Rowbotham E, et al. (2017) Do quantitative and qualitative shear wave elastography have a role in evaluating musculoskeletal soft tissue masses? Eur Radiol 27(2):723–731

    Article  CAS  PubMed  Google Scholar 

  18. Taljanovic MS, et al. (2017) Shear-wave elastography: basic physics and musculoskeletal applications. RadioGraphics 37(3):855–870

    Article  PubMed  Google Scholar 

  19. Aubry S, Nueffer J-P, Tanter M, et al. (2014) Viscoelasticity in Achilles tendonopathy: quantitative assessment by using real-time shear-wave elastography. Radiology 274(3):821–829

    Article  PubMed  Google Scholar 

  20. Zhang ZJ, Ng GY, Lee WC, Fu SN (2014) Changes in morphological and elastic properties of patellar tendon in athletes with unilateral patellar tendinopathy and their relationships with pain and functional disability. PLoS ONE 9(10):e108337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Rouvière O, et al. (2017) Stiffness of benign and malignant prostate tissue measured by shear-wave elastography: a preliminary study. Eur Radiol 27(5):1858–1866

    Article  PubMed  Google Scholar 

  22. Sang L, Wang X, Xu D, Cai Y (2017) Accuracy of shear wave elastography for the diagnosis of prostate cancer: a meta-analysis. Sci Rep 7(1):1949

    Article  CAS  Google Scholar 

  23. Woo S, Suh CH, Kim SY, Cho JY, Kim SH (2017) Shear-wave elastography for detection of prostate cancer: a systematic review and diagnostic meta-analysis. Am J Roentgenol 209:1–9

    Article  Google Scholar 

  24. D’Onofrio M, Crosara S, De Robertis R, Canestrini S, Mucelli RP (2015) Contrast-enhanced ultrasound of focal liver lesions. Am J Roentgenol 205(1):W56–W66

    Article  Google Scholar 

  25. Kim TK, Jang H-J (2014) Contrast-enhanced ultrasound in the diagnosis of nodules in liver cirrhosis. World J Gastroenterol 20(13):3590–3596

    Article  PubMed  PubMed Central  Google Scholar 

  26. Strobel D, et al. (2008) Contrast-enhanced ultrasound for the characterization of focal liver lesions–diagnostic accuracy in clinical practice (DEGUM multicenter trial). Ultraschall Med Stuttg Ger 29(5):499–505

    Article  CAS  Google Scholar 

  27. Westwood M, et al. (2013) Contrast-enhanced ultrasound using SonoVue® (sulphur hexafluoride microbubbles) compared with contrast-enhanced computed tomography and contrast-enhanced magnetic resonance imaging for the characterisation of focal liver lesions and detection of liver metastases: a systematic review and cost-effectiveness analysis. Health Technol Assess Winch Engl 17(16):1–243

    Google Scholar 

  28. Oh TH, Lee YH, Seo IY (2014) Diagnostic efficacy of contrast-enhanced ultrasound for small renal masses. Korean J Urol 55(9):587–592

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yuan Z, Quan J, Yunxiao Z, Jian C, Zhu H (2015) Contrast-enhanced ultrasound in the diagnosis of solitary thyroid nodules. J Cancer Res Ther 11(1):41–45

    Article  PubMed  Google Scholar 

  30. Li W, et al. (2014) Real-time contrast enhanced ultrasound imaging of focal splenic lesions. Eur J Radiol 83(4):646–653

    Article  PubMed  Google Scholar 

  31. Baur ADJ, et al. (2017) A direct comparison of contrast-enhanced ultrasound and dynamic contrast-enhanced magnetic resonance imaging for prostate cancer detection and prediction of aggressiveness. Eur Radiol . https://doi.org/10.1007/s00330-017-5192-2

    PubMed  Google Scholar 

  32. Bishop CM (2006) Pattern recognition and machine learning. New York: Springer

    Google Scholar 

  33. Mitchell TM (1997) Machine learning. WCB. Boston: McGraw-Hill

    Google Scholar 

  34. De Mantaras RL, Armengol E (1998) Machine learning from examples: inductive and lazy methods. Data Knowl Eng 25(1–2):99–123

    Article  Google Scholar 

  35. Dutton DM, Conroy GV (1997) A review of machine learning. Knowl Eng Rev 12(4):341–367

    Article  Google Scholar 

  36. Kotsiantis SB, Zaharakis ID, Pintelas PE (2006) Machine learning: a review of classification and combining techniques. Artif Intell Rev 26(3):159–190

    Article  Google Scholar 

  37. Torresani L (2014) Weakly supervised learning”. Computer vision. New York: Springer, pp 883–885

    Chapter  Google Scholar 

  38. Mohri M, Rostamizadeh A, Talwalkar A (2012) Foundations of machine learning. Cambridge: MIT press

    Google Scholar 

  39. Soh L-K, Tsatsoulis C (1999) Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans Geosci Remote Sens 37(2):780–795

    Article  Google Scholar 

  40. Materka A, Strzelecki M et al. (1998) Texture analysis methods–a review. Technical University of Lodz, Institute of Electronics, COST B11 Report, Brussels, pp 9–11

  41. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1–3):37–52

    Article  CAS  Google Scholar 

  42. Liaw A, Wiener M, et al. (2002) Classification and regression by randomForest. R News 2(3):18–22

    Google Scholar 

  43. Cortes C, Vapnik V (1995) Support vector machine. Mach Learn 20(3):273–297

    Google Scholar 

  44. Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  Google Scholar 

  45. White H (1990) Connectionist nonparametric regression: multilayer feedforward networks can learn arbitrary mappings. Neural Netw 3(5):535–549

    Article  Google Scholar 

  46. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366

    Article  Google Scholar 

  47. Leshno M, Lin VY, Pinkus A, Schocken S (1993) Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw 6(6):861–867

    Article  Google Scholar 

  48. Geisser S (1993) Predictive inference: an introduction. New York: Chapman & Hall

    Book  Google Scholar 

  49. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  CAS  PubMed  Google Scholar 

  50. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  51. Szegedy C et al.(2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9

  52. Sermanet P, Kavukcuoglu K, Chintala S, LeCun Y (2013) Pedestrian detection with unsupervised multi-stage feature learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 3626–3633

  53. Szegedy C, Toshev A, Erhan D (2013) Deep neural networks for object detection. In: Advances in neural information processing systems, pp 2553–2561

  54. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition, ArXiv Prepr. ArXiv14091556

  55. Lawrence S, Giles CL, Tsoi AC, Back AD (1997) Face recognition: a convolutional neural-network approach. IEEE Trans Neural Netw 8(1):98–113

    Article  CAS  PubMed  Google Scholar 

  56. Matsugu M, Mori K, Mitari Y, Kaneda Y (2003) Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Netw 16(5):555–559

    Article  PubMed  Google Scholar 

  57. Farfade SS, Saberian MJ, Li LJ (2015) Multi-view face detection using deep convolutional neural networks. In: Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, pp 643–650

  58. Turaga SC, et al. (2010) Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput 22(2):511–538

    Article  PubMed  Google Scholar 

  59. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 3431–3440

  60. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. Ijcai 14:1137–1145

    Google Scholar 

  61. Arlot S, Celisse A (2010) A survey of cross-validation procedures for model selection. Stat Surv 4:40–79

    Article  Google Scholar 

  62. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29–36

    Article  CAS  PubMed  Google Scholar 

  63. Garra BS, Krasner BH, Horii SC, et al. (1993) Improving the distinction between benign and malignant breast lesions: the value of sonographic texture analysis. Ultrason Imaging 15(4):267–285

    Article  CAS  PubMed  Google Scholar 

  64. Maclin PS, Dempsey J (1992) Using an artificial neural network to diagnose hepatic masses. J Med Syst 16(5):215–225

    Article  CAS  PubMed  Google Scholar 

  65. Giger ML, Karssemeijer N, Schnabel JA (2013) Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer. Annu Rev Biomed Eng 15(1):327–357

    Article  CAS  PubMed  Google Scholar 

  66. Shan J, Alam SK, Garra B, Zhang Y, Ahmed T (2016) Computer-aided diagnosis for breast ultrasound using computerized BI-RADS features and machine learning methods. Ultrasound Med Biol 42(4):980–988

    Article  PubMed  Google Scholar 

  67. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    Article  PubMed  Google Scholar 

  68. Carbonell JG, Michalski RS, Mitchell TM (1983) An overview of machine learning. Machine learning. New york: Springer, pp 3–23

    Google Scholar 

  69. Barinov L, Jairaj A, Paster L et al. (2016) Decision quality support in diagnostic breast ultrasound through artificial Intelligence. In: Signal Processing in Medicine and Biology Symposium, pp 1–4

  70. Choi YJ, et al. (2017) A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of thyroid nodules on ultrasound: initial clinical assessment. Thyroid 27(4):546–552

    Article  PubMed  Google Scholar 

  71. Hiramatsu Y, Muramatsu C, Kobayashi H, Hara , Fujita H (2017) Automated detection of masses on whole breast volume ultrasound scanner: false positive reduction using deep convolutional neural network. Med Imaging . https://doi.org/10.1117/12.2254581

    Google Scholar 

  72. Lekadir K, et al. (2017) A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound. IEEE J Biomed Health Inform 21(1):48–55

    Article  PubMed  Google Scholar 

  73. Cheng PM, Malhi HS (2017) Transfer learning with convolutional neural networks for classification of abdominal ultrasound images. J Digit Imaging 30(2):234–243

    Article  PubMed  Google Scholar 

  74. Antropova N, Huynh BQ, Giger ML (2017) A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys. https://doi.org/10.1002/mp.12453

    PubMed  Google Scholar 

  75. Qi H, Collins S, Noble A (2017) Weakly supervised learning of placental ultrasound images with residual networks. In: Annual Conference on Medical Image Understanding and Analysis, pp 98–108

  76. Cunningham R, Harding P, Loram I (2017) Deep residual networks for quantification of muscle fiber orientation and curvature from ultrasound images. In: Hernández MV, González-Castro V, González-Castro V (eds) Medical image understanding and analysis, vol. 723. Cham: Springer, pp 63–73

    Chapter  Google Scholar 

  77. Namburete AI, Stebbing RV, Kemp B, et al. (2015) Learning-based prediction of gestational age from ultrasound images of the fetal brain. Med. Image Anal. 21(1):72–86

    Article  PubMed  PubMed Central  Google Scholar 

  78. Cary TW, Reamer CB, Sultan LR, Mohler ER, Sehgal CM (2014) Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound: brachial artery vasomotion and transducer pressure effect. Med Phys 41(2):022901

    Article  PubMed  PubMed Central  Google Scholar 

  79. Noble JA, Boukerroui D (2006) Ultrasound image segmentation: a survey. IEEE Trans Med Imaging 25(8):987–1010

    Article  PubMed  Google Scholar 

  80. Noble JA (2010) Ultrasound image segmentation and tissue characterization. Proc Inst Mech Eng Part H 224(2):307–316

    Article  CAS  Google Scholar 

  81. Torbati N, Ayatollahi A, Kermani A (2014) An efficient neural network based method for medical image segmentation. Comput Biol Med 44:76–87

    Article  PubMed  Google Scholar 

  82. Yang X, Rossi PJ, Jani AB, et al. (2016) 3D transrectal ultrasound (TRUS) prostate segmentation based on optimal feature learning framework. Med Imaging. https://doi.org/10.1117/12.2216396

    Google Scholar 

  83. Ghose S, et al. (2013) A supervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound images. Med Image Anal 17(6):587–600

    Article  PubMed  Google Scholar 

  84. Sultan LR, Xiong H, Zafar HM, et al. (2015) Vascularity assessment of thyroid nodules by quantitative color doppler ultrasound. Ultrasound Med Biol 41(5):1287–1293

    Article  PubMed  Google Scholar 

  85. Chauhan A, Sultan LR, Furth EE, et al. (2016) Diagnostic accuracy of hepatorenal index in the detection and grading of hepatic steatosis: factors affecting the accuracy of HRI. J Clin Ultrasound 44(9):580–586

    Article  PubMed  Google Scholar 

  86. Noe MH, et al. (2017) High frequency ultrasound: a novel instrument to quantify granuloma burden in cutaneous sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 34(2):136–141

    Google Scholar 

  87. Xiong H, Sultan LR, Cary TW et al. (2017) The diagnostic performance of leak-plugging automated segmentation vs. manual tracing of breast lesions on ultrasound images. Ultrasound http://journals.sagepub.com/doi/pdf/10.1177/1742271X17690425#articleCitationDownloadContainer. Accessed 17 Jan 2018

  88. Carneiro G, Nascimento JC, Freitas A (2012) The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods. IEEE Trans Image Process 21(3):968–982

    Article  PubMed  Google Scholar 

  89. Menchón-Lara RM, Sancho-Gómez JL (2015) Fully automatic segmentation of ultrasound common carotid artery images based on machine learning. Neurocomputing 151(P1):161–167

    Article  Google Scholar 

  90. Zhang Y, Ying MT, Yang L, Ahuja AT, Chen DZ (2016) Coarse-to-fine stacked fully convolutional nets for lymph node segmentation in ultrasound images. In: Bioinformatics and Biomedicine (BIBM), 2016 IEEE International Conference, pp 443–448

  91. Looney P et al. (2017) Automatic 3D ultrasound segmentation of the first trimester placenta using deep learning. In: Biomedical Imaging (ISBI 2017), IEEE 14th International Symposium on, pp 279–282

  92. Milletari F, et al. (2017) Hough-CNN: deep learning for segmentation of deep brain regions in MRI and ultrasound. Comput Vis Image Underst 164:92–102

    Article  Google Scholar 

  93. Chen F, Wu D, Liao H (2016) Registration of CT and ultrasound images of the spine with neural network and orientation code mutual information. In: Zheng G, Liao H, Jannin P, Cattin P, Lee S-L (eds) Medical imaging and augmented reality, vol. 9805. Cham: Springer, pp 292–301

    Chapter  Google Scholar 

  94. Yang X, Fei B (2012) 3D prostate segmentation of ultrasound images combining longitudinal image registration and machine learning. In: Proceedings of SPIE, vol 8316, p 83162O

  95. Gao Y, Maraci MA, Noble JA (2016) Describing ultrasound video content using deep convolutional neural networks. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp 787–790

  96. Baumgartner CF, Kamnitsas K, Matthew J et al.(2016) Real-time standard scan plane detection and localisation in fetal ultrasound using fully convolutional neural networks. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 9901 LNCS, pp 203–211

  97. Kumar A et al. (2017) Plane identification in fetal ultrasound images using saliency maps and convolutional neural networks. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, pp 791–794

  98. Chen H et al. (2015) Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 9349, pp 507–514

  99. Yaqub M, Kelly B, Papageorghiou AT, Noble JA (2015) Guided random forests for identification of key fetal anatomy and image categorization in ultrasound scans. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp 687–694

  100. Gao X, Li W, Loomes M, Wang L (2017) A fused deep learning architecture for viewpoint classification of echocardiography. Inf Fusion 36:103–113

    Article  Google Scholar 

  101. Sundaresan V, Bridge CP, Ioannou C, Noble JA (2017) Automated characterization of the fetal heart in ultrasound images using fully convolutional neural networks. In: Biomedical Imaging (ISBI 2017), 2017 IEEE 14th International Symposium on, pp 671–674

  102. Khamis H, Zurakhov G, Azar V, et al. (2017) Automatic apical view classification of echocardiograms using a discriminative learning dictionary. Med Image Anal 36:15–21

    Article  PubMed  Google Scholar 

  103. Sigrist RM, Liau J, El Kaffas A, Chammas MC, Willmann JK (2017) Ultrasound elastography: review of techniques and clinical applications. Theranostics 7(5):1303

    Article  PubMed  PubMed Central  Google Scholar 

  104. Rouze NC, Wang MH, Palmeri ML, Nightingale KR (2012) Parameters affecting the resolution and accuracy of 2-D quantitative shear wave images. IEEE Trans Ultrason Ferroelectr Freq Control 59:1729–1740

    Article  PubMed  PubMed Central  Google Scholar 

  105. Pellot-Barakat C, Lefort M, Chami L, et al. (2015) Automatic assessment of shear wave elastography quality and measurement reliability in the liver. Ultrasound Med Biol 41(4):936–943

    Article  PubMed  Google Scholar 

  106. Wang J, Guo L, Shi X, et al. (2012) Real-time elastography with a novel quantitative technology for assessment of liver fibrosis in chronic hepatitis B. Eur J Radiol 81(1):e31–e36

    Article  PubMed  Google Scholar 

  107. Xiao Y, et al. (2014) Computer-aided diagnosis based on quantitative elastographic features with supersonic shear wave imaging. Ultrasound Med Biol 40(2):275–286

    Article  PubMed  Google Scholar 

  108. Bhatia KSS, Lam ACL, Pang SWA, Wang D, Ahuja AT (2016) Feasibility study of texture analysis using ultrasound shear wave elastography to predict malignancy in thyroid nodules. Ultrasound Med Biol 42(7):1671–1680

    Article  PubMed  Google Scholar 

  109. Gatos I, et al. (2017) A machine-learning algorithm toward color analysis for chronic liver disease classification, employing ultrasound shear wave elastography. Ultrasound Med Biol 43:1797–1810

    Article  PubMed  Google Scholar 

  110. Zhang Q, Xiao Y, Chen S, Wang C, Zheng H (2015) Quantification of elastic heterogeneity using contourlet-based texture analysis in shear-wave elastography for breast tumor classification. Ultrasound Med Biol 41(2):588–600

    Article  PubMed  Google Scholar 

  111. Zhang Q, et al. (2016) Deep learning based classification of breast tumors with shear-wave elastography. Ultrasonics 72:150–157

    Article  PubMed  Google Scholar 

  112. Wu K, Chen X, Ding M (2014) Deep learning based classification of focal liver lesions with contrast-enhanced ultrasound. Opt-Int J Light Electron Opt 125(15):4057–4063

    Article  Google Scholar 

  113. Zeng J, Ustun B, Rudin C (2017) Interpretable classification models for recidivism prediction. J R Stat Soc Ser A 180(3):689–722

    Article  Google Scholar 

  114. Shi J, Zhou S, Liu X, et al. (2016) Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset. Neurocomputing 194:87–94

    Article  Google Scholar 

  115. Singh BK, Verma K, Thoke AS (2016) Fuzzy cluster based neural network classifier for classifying breast tumors in ultrasound images. Expert Syst Appl 66:114–123

    Article  Google Scholar 

  116. Wu WJ, Lin SW, Moon WK (2015) An artificial immune system-based support vector machine approach for classifying ultrasound breast tumor images. J Digit Imaging 28(5):576–585

    Article  PubMed  PubMed Central  Google Scholar 

  117. Shan J, Cheng HD, Wang Y (2012) Completely automated segmentation approach for breast ultrasound images using multiple-domain features. Ultrasound Med Biol 38(2):262–275

    Article  PubMed  Google Scholar 

  118. Nascimento CDL, Silva SDS, da Silva TA, et al. (2016) Breast tumor classification in ultrasound images using support vector machines and neural networks. Rev Bras Eng Biomed 32(3):283–292

    Google Scholar 

  119. Marcomini KD, Carneiro AAO, Schiabel H (2016) Application of artificial neural network models in segmentation and classification of nodules in breast ultrasound digital images. Int J Biomed Imaging 2016:13

    Article  Google Scholar 

  120. Jamieson AR, Giger ML, Drukker K, et al. (2009) Exploring nonlinear feature space dimension reduction and data representation in breast CADx with Laplacian eigenmaps and t-SNE: nonlinear dimension reduction and representation in breast CADx. Med Phys 37(1):339–351

    Article  PubMed Central  Google Scholar 

  121. Hwang YN, Lee JH, Kim GY, Jiang YY, Kim SM (2015) Classification of focal liver lesions on ultrasound images by extracting hybrid textural features and using an artificial neural network. Biomed Mater Eng 26:S1599–S1611

    PubMed  Google Scholar 

  122. Suganya R, Kirubakaran R, Rajaram S (2014) Classification and retrieval of focal and diffuse liver from ultrasound images using machine learning techniques. Cham: Springer, pp 253–261

    Google Scholar 

  123. Kalyan K, Jakhia B, Lele RD, Joshi M, Chowdhary A (2014) Artificial neural network application in the diagnosis of disease conditions with liver ultrasound images. Adv Bioinforma. https://doi.org/10.1155/2014/708279

    Google Scholar 

  124. Brattain LJ, Telfer BA, Liteplo AS, Noble VE (2013) Automated B-line scoring on thoracic sonography. J Ultrasound Med 32(12):2185–2190

    Article  PubMed  Google Scholar 

  125. Veeramani SK, Muthusamy E (2016) Detection of abnormalities in ultrasound lung image using multi-level RVM classification. J Matern Fetal Neonatal Med 29(11):1844–1852

    PubMed  Google Scholar 

  126. Konig T, Steffen J, Rak M, et al. (2015) Ultrasound texture-based CAD system for detecting neuromuscular diseases. Int J Comput Assist Radiol Surg 10(9):1493–1503

    Article  PubMed  Google Scholar 

  127. Srivastava T, Darras BT, Wu JS, Rutkove SB (2012) Machine learning algorithms to classify spinal muscular atrophy subtypes. Neurology 79(4):358–364

    Article  PubMed  PubMed Central  Google Scholar 

  128. Sheet D, et al. (2014) Joint learning of ultrasonic backscattering statistical physics and signal confidence primal for characterizing atherosclerotic plaques using intravascular ultrasound. Med Image Anal 18(1):103–117

    Article  PubMed  Google Scholar 

  129. Yu S, Tan KK, Sng BL, Li S, Sia AT (2015) Lumbar ultrasound image feature extraction and classification with support vector machine. Ultrasound Med Biol 41(10):2677–2689

    Article  PubMed  Google Scholar 

  130. Pathak H, Kulkarni V (2015) Identification of ovarian mass through ultrasound images using machine learning techniques. In: Research in Computational Intelligence and Communication Networks (ICRCICN), 2015 IEEE International Conference, pp. 137–140

  131. Aramendía-Vidaurreta V, Cabeza R, Villanueva A, Navallas J, Alcázar JL (2016) Ultrasound image discrimination between benign and malignant adnexal masses based on a neural network approach. Ultrasound Med Biol 42(3):742–752

    Article  PubMed  Google Scholar 

  132. Subramanya MB, Kumar V, Mukherjee S, Saini M (2015) SVM-based CAC system for B-mode kidney ultrasound images. J Digit Imaging 28(4):448–458

    Article  CAS  PubMed  Google Scholar 

  133. Takagi K, Kondo S, Nakamura K, Takiguchi M (2014) Lesion type classification by applying machine-learning technique to contrast-enhanced ultrasound images. IEICE Trans Inf Syst E97D(11):2947–2954

    Article  Google Scholar 

  134. Caxinha M, et al. (2015) Automatic cataract classification based on ultrasound technique using machine learning: a comparative study. Phys Procedia 70:1221–1224

    Article  Google Scholar 

  135. Sjogren AR, Leo MM, Feldman J, Gwin JT (2016) Image segmentation and machine learning for detection of abdominal free fluid in focused assessment with sonography for trauma examinations: a pilot study. J Ultrasound Med 35(11):2501–2509

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Assistant Secretary of Defense for Research and Engineering. This work is also supported by the NIBIB of the National Institutes of Health under award numbers HHSN268201300071 C and K23 EB020710. The authors are solely responsible for the content and the work does not represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura J. Brattain.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brattain, L.J., Telfer, B.A., Dhyani, M. et al. Machine learning for medical ultrasound: status, methods, and future opportunities. Abdom Radiol 43, 786–799 (2018). https://doi.org/10.1007/s00261-018-1517-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-018-1517-0

Keywords

Navigation