Skip to main content
Log in

Combinatorial treatments including vaccines, chemotherapy and monoclonal antibodies for cancer therapy

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Accumulating evidence suggests that despite the potency of cytotoxic anticancer agents, and the great specificity that can be achieved with immunotherapy, neither of these two types of treatment by itself has been sufficient to eradicate the disease. Still, the combination of these two different modalities holds enormous potential for eliciting therapeutic results. Indeed, certain chemotherapeutic agents have shown immunomodulatory activities, and several combined approaches have already been attempted. For instance, chemotherapy has been proven to enhance the efficacy of tumor cell vaccines, and to favor the activity of adoptively transferred tumor-specific T cells. A number of mechanisms have been proposed for the chemotherapy-triggered enhancement of immunotherapy response. Thus, chemotherapy may favor tumor cell death, and by that enhance tumor-antigen cross-presentation in vivo. Drug-induced myelosuppression may induce the production of cytokines favoring homeostatic proliferation, and/or ablate immunosuppression mechanisms. Furthermore, the recently reported synergy between monoclonal antibodies and chemotherapy or peptide vaccination is based upon the induction of endogenous humoral and cellular immune responses. This would suggest that monoclonal antibodies may not only provide passive immunotherapy but can also promote tumor-specific active immunity. This article will review several strategies in which immunotherapy can be exploited in preclinical and clinical studies in combination with other agents and therapeutic modalities that are quite unique when compared with “conventional” combination therapies (ie, treatments with chemotherapeutic drugs or chemotherapy and radiotherapy based protocols). The results from these studies may have significant implications for the development of new protocols based on combinatorial treatments including vaccines, chemotherapy and monoclonal antibodies, suggesting an exciting potential for therapeutic synergy with general applicability to various cancer types. Given the complicity of immune-based therapies and cancer pharmacology, it will be necessary to bring together cancer immunologists and clinicians, so as to provide a robust stimulus for realizing the successful management of cancer in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Antonia SJ, Mirza N, Fricke I, Chiappori A, Thompson P, Williams N, Bepler G, Simon G, Janssen W, Lee JH, Menander K, Chada S, Gabrilovich DI (2006) Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin Cancer Res 12:878–887

    Article  PubMed  CAS  Google Scholar 

  2. Arinaga S, Akiyoshi T, Tsuji H (1986) Augmentation of the generation of cell-mediated cytotoxicity after a single dose of adriamycin in cancer patients. Cancer Res 46:4213–4216

    PubMed  CAS  Google Scholar 

  3. Arlen PM, Gulley JL, Parker C, Skarupa L, Pazdur M, Panicali D, Beetham P, Tsang KY, Grosenbach DW, Feldman J, Steinberg SM, Jones E, Chen C, Marte J, Schlom J, Dahut W (2006) A randomized phase II study of concurrent docetaxel plus vaccine versus vaccine alone in metastatic androgen-independent prostate cancer. Clin Cancer Res 12:1260–1269

    Article  PubMed  CAS  Google Scholar 

  4. Arnould L, Gelly M, Penault-Llorca F, Benoit L, Bonnetain F, Migeon C, Cabaret V, Fermeaux V, Bertheau P, Garnier J, Jeannin JF, Coudert B (2006) Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism? Br J Cancer 94:259–267

    Article  PubMed  CAS  Google Scholar 

  5. Belardelli F, Ferrantini M, Parmiani G, Schlom J, Garaci E (2004) International meeting on cancer vaccines: how can we enhance efficacy of therapeutic vaccines? Cancer Res 64:6827–6830

    Article  PubMed  CAS  Google Scholar 

  6. Berd D, Maguire HC Jr, Mastrangelo MJ (1986) Induction of cell-mediated immunity to autologous melanoma cells and regression of metastases after treatment with a melanoma cell vaccine preceded by cyclophosphamide. Cancer Res 46:2572–2577

    PubMed  CAS  Google Scholar 

  7. Berd D, Mastrangelo MJ (1988) Effect of low dose cyclophosphamide on the immune system of cancer patients: depletion of CD4+, 2H4+ suppressor-inducer T-cells. Cancer Res 48:1671–1675

    PubMed  CAS  Google Scholar 

  8. Boel P, Wildmann C, Sensi ML, Brasseur R, Renauld JC, Coulie P, Boon T, van der Bruggen P (1995) BAGE: a new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes. Immunity 2:167–175

    Article  PubMed  CAS  Google Scholar 

  9. Carson WE 3rd, Shapiro CL, Crespin TR, Thornton LM, Andersen BL (2004) Cellular immunity in breast cancer patients completing taxane treatment. Clin Cancer Res 10:3401–3409

    Article  PubMed  CAS  Google Scholar 

  10. Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N, Schmitt E, Hamai A, Hervas-Stubbs S, Obeid M, Coutant F, Metivier D, Pichard E, Aucouturier P, Pierron G, Garrido C, Zitvogel L, Kroemer G (2005) Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 202:1691–1701

    Article  PubMed  CAS  Google Scholar 

  11. Cassinelli G, Supino R, Perego P, Polizzi D, Lanzi C, Pratesi G, Zunino F (2001) A role for loss of p53 function in sensitivity of ovarian carcinoma cells to taxanes. Int J Cancer 92:738–747

    Article  PubMed  CAS  Google Scholar 

  12. Chu Y, Wang LX, Yang G, Ross HJ, Urba WJ, Prell R, Jooss K, Xiong S, Hu HM (2006) Efficacy of GM-CSF-producing tumor vaccine after docetaxel chemotherapy in mice bearing established Lewis lung carcinoma. J Immunother 29:367–380

    Article  PubMed  CAS  Google Scholar 

  13. Clynes R (2006) Antitumor antibodies in the treatment of cancer: Fc receptors link opsonic antibody with cellular immunity. Hematol Oncol Clin North Am 20:585–612

    Article  PubMed  Google Scholar 

  14. Correale P, Aquino A, Giuliani A, Pellegrini M, Micheli L, Cusi MG, Nencini C, Petrioli R, Prete SP, De Vecchis L, Turriziani M, Giorgi G, Bonmassar E, Francini G (2003) Treatment of colon and breast carcinoma cells with 5-fluorouracil enhances expression of carcinoembryonic antigen and susceptibility to HLA-A(*)02.01 restricted, CEA-peptide-specific cytotoxic T cells in vitro. Int J Cancer 104:437–445

    Article  PubMed  CAS  Google Scholar 

  15. Correale P, Cusi MG, Tsang KY, Del Vecchio MT, Marsili S, Placa ML, Intrivici C, Aquino A, Micheli L, Nencini C, Ferrari F, Giorgi G, Bonmassar E, Francini G (2005) Chemo-immunotherapy of metastatic colorectal carcinoma with gemcitabine plus FOLFOX 4 followed by subcutaneous granulocyte macrophage colony-stimulating factor and interleukin-2 induces strong immunologic and antitumor activity in metastatic colon cancer patients. J Clin Oncol 23:8950–8958

    Article  PubMed  CAS  Google Scholar 

  16. Correale P, Del Vecchio MT, Di Genova G, Savellini GG, La Placa M, Terrosi C, Vestri M, Urso R, Lemonnier F, Aquino A, Bonmassar E, Giorgi G, Francini G, Cusi MG (2005) 5-fluorouracil-based chemotherapy enhances the antitumor activity of a thymidylate synthase-directed polyepitopic peptide vaccine. J Natl Cancer Inst 97:1437–1445

    PubMed  CAS  Google Scholar 

  17. Correale P, Del Vecchio MT, La Placa M, Montagnani F, Di Genova G, Savellini GG, Terrosi C, Mannucci S, Giorgi G, Francini G, Cusi MG (2008) Chemotherapeutic drugs may be used to enhance the killing efficacy of human tumor antigen peptide-specific CTLs. J Immunother 31:132–147

    Article  PubMed  CAS  Google Scholar 

  18. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854

    Article  PubMed  CAS  Google Scholar 

  19. Emens LA, Jaffee EM (2005) Leveraging the activity of tumor vaccines with cytotoxic chemotherapy. Cancer Res 65:8059–8064

    Article  PubMed  CAS  Google Scholar 

  20. Fehervari Z, Sakaguchi S (2004) Development and function of CD25+ CD4+ regulatory T cells. Curr Opin Immunol 16:203–208

    Article  PubMed  CAS  Google Scholar 

  21. Feinstein E, Druck T, Kastury K, Berissi H, Goodart SA, Overhauser J, Kimchi A, Huebner K (1995) Assignment of DAP1 and DAPK—genes that positively mediate programmed cell death triggered by IFN-gamma—to chromosome regions 5p12.2 and 9q34.1, respectively. Genomics 29:305–307

    Article  PubMed  CAS  Google Scholar 

  22. Gerritsen W, Eertwegh A, De Gruijl T (2006) A dose-escalation trial of GM-CSF-gene transduced allogeneic prostate cancer cellular immunotherapy in combination with a fully human anti-CTLA antibody (MDX-010, ipilimumab) in patients with metastatic hormone refractory prostate cancer (mHRPC). J Clin Oncol 24:2500

    Google Scholar 

  23. Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C, Chauffert B, Solary E, Bonnotte B, Martin F (2004) CD4+ CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34:336–344

    Article  PubMed  CAS  Google Scholar 

  24. Ghiringhelli F, Menard C, Terme M, Flament C, Taieb J, Chaput N, Puig PE, Novault S, Escudier B, Vivier E, Lecesne A, Robert C, Blay JY, Bernard J, Caillat-Zucman S, Freitas A, Tursz T, Wagner-Ballon O, Capron C, Vainchencker W, Martin F, Zitvogel L (2005) CD4+ CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 202:1075–1085

    Article  PubMed  CAS  Google Scholar 

  25. Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F, Solary E, Le Cesne A, Zitvogel L, Chauffert B (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+ CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56:641–648

    Article  PubMed  CAS  Google Scholar 

  26. Glaser M (1979) Regulation of specific cell-mediated cytotoxic response against SV40-induced tumor associated antigens by depletion of suppressor T cells with cyclophosphamide in mice. J Exp Med 149:774–779

    Article  PubMed  CAS  Google Scholar 

  27. Gribben JG, Ryan DP, Boyajian R, Urban RG, Hedley ML, Beach K, Nealon P, Matulonis U, Campos S, Gilligan TD, Richardson PG, Marshall B, Neuberg D, Nadler LM (2005) Unexpected association between induction of immunity to the universal tumor antigen CYP1B1 and response to next therapy. Clin Cancer Res 11:4430–4436

    Article  PubMed  CAS  Google Scholar 

  28. Hermans IF, Chong TW, Palmowski MJ, Harris AL, Cerundolo V (2003) Synergistic effect of metronomic dosing of cyclophosphamide combined with specific antitumor immunotherapy in a murine melanoma model. Cancer Res 63:8408–8413

    PubMed  CAS  Google Scholar 

  29. Hu HM, Poehlein CH, Urba WJ, Fox BA (2002) Development of antitumor immune responses in reconstituted lymphopenic hosts. Cancer Res 62:3914–3919

    PubMed  CAS  Google Scholar 

  30. Kaufmann SH, Earnshaw WC (2000) Induction of apoptosis by cancer chemotherapy. Exp Cell Res 256:42–49

    Article  PubMed  CAS  Google Scholar 

  31. Ko HJ, Kim YJ, Kim YS, Chang WS, Ko SY, Chang SY, Sakaguchi S, Kang CY (2007) A combination of chemoimmunotherapies can efficiently break self-tolerance and induce antitumor immunity in a tolerogenic murine tumor model. Cancer Res 67:7477–7486

    Article  PubMed  CAS  Google Scholar 

  32. Kozar K, Kaminski R, Switaj T, Oldak T, Machaj E, Wysocki PJ, Mackiewicz A, Lasek W, Jakobisiak M, Golab J (2003) Interleukin 12-based immunotherapy improves the antitumor effectiveness of a low-dose 5-Aza-2′-deoxycitidine treatment in L1210 leukemia and B16F10 melanoma models in mice. Clin Cancer Res 9:3124–3133

    PubMed  CAS  Google Scholar 

  33. Li J, Yang Y, Fujie T, Baba K, Ueo H, Mori M, Akiyoshi T (1996) Expression of BAGE, GAGE, and MAGE genes in human gastric carcinoma. Clin Cancer Res 2:1619–1625

    PubMed  CAS  Google Scholar 

  34. Li X, Gong J, Feldman E, Seiter K, Traganos F, Darzynkiewicz Z (1994) Apoptotic cell death during treatment of leukemias. Leuk Lymphoma 13(Suppl 1):65–70

    Article  PubMed  Google Scholar 

  35. Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H (2005) Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105:2862–2868

    Article  PubMed  CAS  Google Scholar 

  36. Machiels JP, Reilly RT, Emens LA, Ercolini AM, Lei RY, Weintraub D, Okoye FI, Jaffee EM (2001) Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res 61:3689–3697

    PubMed  CAS  Google Scholar 

  37. MacLean GD, Miles DW, Rubens RD, Reddish MA, Longenecker BM (1996) Enhancing the effect of THERATOPE STn-KLH cancer vaccine in patients with metastatic breast cancer by pretreatment with low-dose intravenous cyclophosphamide. J Immunother Emphasis Tumor Immunol 19:309–316

    PubMed  CAS  Google Scholar 

  38. Maecker B, Sherr DH, Vonderheide RH, von Bergwelt-Baildon MS, Hirano N, Anderson KS, Xia Z, Butler MO, Wucherpfennig KW, O’Hara C, Cole G, Kwak SS, Ramstedt U, Tomlinson AJ, Chicz RM, Nadler LM, Schultze JL (2003) The shared tumor-associated antigen cytochrome P450 1B1 is recognized by specific cytotoxic T cells. Blood 102:3287–3294

    Article  PubMed  CAS  Google Scholar 

  39. Maker AV, Phan GQ, Attia P, Yang JC, Sherry RM, Topalian SL, Kammula US, Royal RE, Haworth LR, Levy C, Kleiner D, Mavroukakis SA, Yellin M, Rosenberg SA (2005) Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a phase I/II study. Ann Surg Oncol 12:1005–1016

    Article  PubMed  Google Scholar 

  40. Mastrangelo MJ, Berd D, Maguire H Jr (1986) The immunoaugmenting effects of cancer chemotherapeutic agents. Semin Oncol 13:186–194

    PubMed  CAS  Google Scholar 

  41. Mesner PW Jr, Budihardjo II, Kaufmann SH (1997) Chemotherapy-induced apoptosis. Adv Pharmacol 41:461–499

    Article  PubMed  CAS  Google Scholar 

  42. Mihich E (2007) Anticancer drug induced immunomodulation and cancer therapeutics. Curr Cancer Ther Rev 3:174–193

    Article  CAS  Google Scholar 

  43. Mittendorf EA, Storrer CE, Shriver CD, Ponniah S, Peoples GE (2006) Investigating the combination of trastuzumab and HER2/neu peptide vaccines for the treatment of breast cancer. Ann Surg Oncol 13:1085–1098

    Article  PubMed  Google Scholar 

  44. Muranski P, Boni A, Wrzesinski C, Citrin DE, Rosenberg SA, Childs R, Restifo NP (2006) Increased intensity lymphodepletion and adoptive immunotherapy—how far can we go? Nat Clin Pract Oncol 3:668–681

    Article  PubMed  CAS  Google Scholar 

  45. Nastala CL, Edington HD, McKinney TG, Tahara H, Nalesnik MA, Brunda MJ, Gately MK, Wolf SF, Schreiber RD, Storkus WJ et al (1994) Recombinant IL-12 administration induces tumor regression in association with IFN-gamma production. J Immunol 153:1697–1706

    PubMed  CAS  Google Scholar 

  46. Nowak AK, Robinson BW, Lake RA (2002) Gemcitabine exerts a selective effect on the humoral immune response: implications for combination chemo-immunotherapy. Cancer Res 62:2353–2358

    PubMed  CAS  Google Scholar 

  47. Nowak AK, Lake RA, Marzo AL, Scott B, Heath WR, Collins EJ, Frelinger JA, Robinson BW (2003) Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. J Immunol 170:4905–4913

    PubMed  CAS  Google Scholar 

  48. Nowak AK, Robinson BW, Lake RA (2003) Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res 63:4490–4496

    PubMed  CAS  Google Scholar 

  49. Orsini F, Pavelic Z, Mihich E (1977) Increased primary cell-mediated immunity in culture subsequent to adriamycin or daunorubicin treatment of spleen donor mice. Cancer Res 37:1719–1726

    PubMed  CAS  Google Scholar 

  50. Ozoren N, El-Deiry WS (2003) Cell surface Death Receptor signaling in normal and cancer cells. Semin Cancer Biol 13:135–147

    Article  PubMed  CAS  Google Scholar 

  51. Polak L, Turk JL (1974) Reversal of immunological tolerance by cyclophosphamide through inhibition of suppressor cell activity. Nature 249:654–656

    Article  PubMed  CAS  Google Scholar 

  52. Qin T, Youssef EM, Jelinek J, Chen R, Yang AS, Garcia-Manero G, Issa JP (2007) Effect of cytarabine and decitabine in combination in human leukemic cell lines. Clin Cancer Res 13:4225–4232

    Article  PubMed  CAS  Google Scholar 

  53. Qin Z, Richter G, Schuler T, Ibe S, Cao X, Blankenstein T (1998) B cells inhibit induction of T cell-dependent tumor immunity. Nat Med 4:627–630

    Article  PubMed  CAS  Google Scholar 

  54. Robbins PF, Dudley ME, Wunderlich J, El-Gamil M, Li YF, Zhou J, Huang J, Powell DJ Jr, Rosenberg SA (2004) Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J Immunol 173:7125–7130

    PubMed  CAS  Google Scholar 

  55. Salomons GS, Smets LA, Verwijs-Janssen M, Hart AA, Haarman EG, Kaspers GJ, Wering EV, Der Does-Van Den Berg AV, Kamps WA (1999) Bcl-2 family members in childhood acute lymphoblastic leukemia: relationships with features at presentation, in vitro and in vivo drug response and long-term clinical outcome. Leukemia 13:1574–1580

    Article  PubMed  CAS  Google Scholar 

  56. Schiavoni G, Mattei F, Di Pucchio T, Santini SM, Bracci L, Belardelli F, Proietti E (2000) Cyclophosphamide induces type I interferon and augments the number of CD44(hi) T lymphocytes in mice: implications for strategies of chemoimmunotherapy of cancer. Blood 95:2024–2030

    PubMed  CAS  Google Scholar 

  57. Schuurhuis DH, van Montfoort N, Ioan-Facsinay A, Jiawan R, Camps M, Nouta J, Melief CJ, Verbeek JS, Ossendorp F (2006) Immune complex-loaded dendritic cells are superior to soluble immune complexes as antitumor vaccine. J Immunol 176:4573–4580

    PubMed  CAS  Google Scholar 

  58. Serrano A, Garcia A, Abril E, Garrido F, Ruiz-Cabello F (1996) Methylated CpG points identified within MAGE-1 promoter are involved in gene repression. Int J Cancer 68:464–470

    Article  PubMed  CAS  Google Scholar 

  59. Serrano A, Tanzarella S, Lionello I, Mendez R, Traversari C, Ruiz-Cabello F, Garrido F (2001) Rexpression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza–2′-deoxycytidine treatment. Int J Cancer 94:243–251

    Article  PubMed  CAS  Google Scholar 

  60. Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM (2005) Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 11:6713–6721

    Article  PubMed  CAS  Google Scholar 

  61. Szyf M (2006) Targeting DNA methylation in cancer. Bull Cancer 93:961–972

    PubMed  CAS  Google Scholar 

  62. Tanaka F, Yamaguchi H, Ohta M, Mashino K, Sonoda H, Sadanaga N, Inoue H, Mori M (2002) Intratumoral injection of dendritic cells after treatment of anticancer drugs induces tumor-specific antitumor effect in vivo. Int J Cancer 101:265–269

    Article  PubMed  CAS  Google Scholar 

  63. Taylor C, Hershman D, Shah N, Suciu-Foca N, Petrylak DP, Taub R, Vahdat L, Cheng B, Pegram M, Knutson KL, Clynes R (2007) Augmented HER-2 specific immunity during treatment with trastuzumab and chemotherapy. Clin Cancer Res 13:5133–5143

    Article  PubMed  CAS  Google Scholar 

  64. Treon SP, Hansen M, Branagan AR, Verselis S, Emmanouilides C, Kimby E, Frankel SR, Touroutoglou N, Turnbull B, Anderson KC, Maloney DG, Fox EA (2005) Polymorphisms in FcgammaRIIIA (CD16) receptor expression are associated with clinical response to rituximab in Waldenstrom’s macroglobulinemia. J Clin Oncol 23:474–481

    Article  PubMed  CAS  Google Scholar 

  65. Weng WK, Levy R (2003) Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 21:3940–3947

    Article  PubMed  CAS  Google Scholar 

  66. Wheeler CJ, Das A, Liu G, Yu JS, Black KL (2004) Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin Cancer Res 10:5316–5326

    Article  PubMed  CAS  Google Scholar 

  67. Wrzesinski C, Paulos CM, Gattinoni L, Palmer DC, Kaiser A, Yu Z, Rosenberg SA, Restifo NP (2007) Hematopoietic stem cells promote the expansion and function of adoptively transferred antitumor CD8 T cells. J Clin Invest 117:492–501

    Article  PubMed  CAS  Google Scholar 

  68. Yu B, Kusmartsev S, Cheng F, Paolini M, Nefedova Y, Sotomayor E, Gabrilovich D (2003) Effective combination of chemotherapy and dendritic cell administration for the treatment of advanced-stage experimental breast cancer. Clin Cancer Res 9:285–294

    PubMed  CAS  Google Scholar 

  69. Zagozdzon R, Golab J, Stoklosa T, Giermasz A, Nowicka D, Feleszko W, Lasek W, Jakobisiak M (1998) Effective chemo-immunotherapy of L1210 leukemia in vivo using interleukin-12 combined with doxorubicin but not with cyclophosphamide, paclitaxel or cisplatin. Int J Cancer 77:720–727

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin N. Baxevanis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baxevanis, C.N., Perez, S.A. & Papamichail, M. Combinatorial treatments including vaccines, chemotherapy and monoclonal antibodies for cancer therapy. Cancer Immunol Immunother 58, 317–324 (2009). https://doi.org/10.1007/s00262-008-0576-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0576-4

Keywords

Navigation