Skip to main content
Log in

Cationised gelatin and hyaluronic acid coating enhances polyethylene terephthalate artificial ligament graft osseointegration in porcine bone tunnels

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate whether cationised gelatin and hyaluronic acid (CH) coating could induce polyethylene terephthalate (PET) artificial ligament graft osseointegration in the bone tunnel.

Methods

Surface modification of PET artificial ligament graft was performed by layer-by-layer (LBL) self-assembly CH coating. Six pigs underwent anterior cruciate ligament (ACL) reconstruction on the right knees, with three pigs receiving the CH-coated PET grafts and the other three pigs non-CH-coated PET grafts as controls. They were sacrificed at three months after surgery and the graft-bone complexes were acquired for computed tomography (CT) scan and histological examination.

Results

CT scans showed a significant difference at the distal femoral site (p = 0.031) or at the distal tibial site (p = 0.0078), but no significant difference in the bone tunnel areas’ enlargement at other sites (p > 0.05) between the CH group and the control group. Histologically, application of CH coating induced new bone formation between graft and bone at three months compared with the controls at the distal site. The interface width of the CH group was significantly lower than that of the control group at the distal femoral site (p = 0.0327) and at the distal tibial site (p = 0.0047).

Conclusions

The study has shown that CH coating on the PET artificial ligament surface has a positive biological effect in the induction of artificial ligament osseointegration within the bone tunnel at the distal site of the bone tunnel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu ZT, Zhang XL, Jiang Y, Zeng BF (2010) Four-strand hamstring tendon autograft versus LARS artificial ligament for anterior cruciate ligament reconstruction. Int Orthop 34:45–49

    Article  PubMed  CAS  Google Scholar 

  2. Shen G, Xu Y, Dong Q, Zhou H, Yu C (2012) Arthroscopic posterior cruciate ligament reconstruction using LARS artificial ligament: a retrospective study. J Surg Res 173:75–82

    Article  PubMed  Google Scholar 

  3. Hamido F, Misfer AK, Al Harran H, Khadrawe TA, Soliman A, Talaat A, Awad A, Khairat S (2011) The use of the LARS artificial ligament to augment a short or undersized ACL hamstrings tendon graft. Knee 18:373–378

    Article  PubMed  CAS  Google Scholar 

  4. Ranger P, Renaud A, Phan P, Dahan P, De Oliveira E Jr, Delisle J (2011) Evaluation of reconstructive surgery using artificial ligaments in 71 acute knee dislocations. Int Orthop 35:1477–1482

    Article  PubMed  Google Scholar 

  5. Guidoin MF, Marois Y, Bejui J, Poddevin N, King MW, Guidoin R (2000) Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials 21:2461–2474

    Article  PubMed  CAS  Google Scholar 

  6. Gao K, Chen S, Wang L, Zhang W, Kang Y, Dong Q, Zhou H, Li L (2010) Anterior cruciate ligament reconstruction with LARS artificial ligament: a multicenter study with 3- to 5-year follow-up. Arthroscopy 26:515–523

    Article  PubMed  Google Scholar 

  7. Funakoshi T, Majima T, Iwasaki N, Yamane S, Masuko T, Minami A, Harada K, Tamura H, Tokura S, Nishimura S (2005) Novel chitosan-based hyaluronan hybrid polymer fibers as a scaffold in ligament tissue engineering. J Biomed Mater Res A 74:338–346

    PubMed  Google Scholar 

  8. Irie T, Majima T, Sawaguchi N, Funakoshi T, Nishimura S, Minami A (2011) Biomechanical and histologic evaluation of tissue engineered ligaments using chitosan and hyaluronan hybrid polymer fibers: a rabbit medial collateral ligament reconstruction model. J Biomed Mater Res A 97:111–117

    PubMed  Google Scholar 

  9. de Wit T, de Putter D, Tra WM, Rakhorst HA, van Osch GJ, Hovius SE, van Neck JW (2009) Auto-crosslinked hyaluronic acid gel accelerates healing of rabbit flexor tendons in vivo. J Orthop Res 27:408–415

    Article  PubMed  Google Scholar 

  10. Zhou PH, Liu SQ, Peng H (2008) The effect of hyaluronic acid on IL-1beta-induced chondrocyte apoptosis in a rat model of osteoarthritis. J Orthop Res 26:1643–1648

    Article  PubMed  CAS  Google Scholar 

  11. Peng H, Zhou JL, Liu SQ, Hu QJ, Ming JH, Qiu B (2010) Hyaluronic acid inhibits nitric oxide-induced apoptosis and dedifferentiation of articular chondrocytes in vitro. Inflamm Res 59:519–530

    Article  PubMed  CAS  Google Scholar 

  12. Mitsui Y, Gotoh M, Nakama K, Yamada T, Higuchi F, Nagata K (2008) Hyaluronic acid inhibits mRNA expression of proinflammatory cytokines and cyclooxygenase-2/prostaglandin E(2) production via CD44 in interleukin-1-stimulated subacromial synovial fibroblasts from patients with rotator cuff disease. J Orthop Res 26:1032–1037

    Article  PubMed  CAS  Google Scholar 

  13. Xu X, Capito RM, Spector M (2008) Delivery of plasmid IGF-1 to chondrocytes via cationized gelatin nanoparticles. J Biomed Mater Res A 84:73–83

    PubMed  Google Scholar 

  14. Shen H, Hu X, Yang F, Bei J, Wang S (2007) Combining oxygen plasma treatment with anchorage of cationized gelatin for enhancing cell affinity of poly(lactide-co-glycolide). Biomaterials 28:4219–4230

    Article  PubMed  CAS  Google Scholar 

  15. Chen JP, Su CH (2011) Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomater 7:234–243

    Article  PubMed  CAS  Google Scholar 

  16. Li H, Chen C, Zhang S, Jiang J, Tao H, Xu J, Sun J, Zhong W, Chen S (2012) The use of layer by layer self-assembled coatings of hyaluronic acid and cationized gelatin to improve the biocompatibility of poly(ethylene terephthalate) artificial ligaments for reconstruction of the anterior cruciate ligament. Acta Biomater 8:4007–4019. doi:10.1016/j.actbio.2012.07.008

    Google Scholar 

  17. Li H, Ge Y, Zhang P, Wu L, Chen S (2012) The effect of layer-by-layer chitosan-hyaluronic acid coating on graft-to-bone healing of a poly(ethylene terephthalate) artificial ligament. J Biomater Sci Polym Ed 23:425–438

    Article  PubMed  Google Scholar 

  18. Chen CH (2009) Graft healing in anterior cruciate ligament reconstruction. Sports Med Arthrosc Rehabil Ther Technol 1:21

    Article  PubMed  Google Scholar 

  19. Ekdahl M, Wang JH, Ronga M, Fu FH (2008) Graft healing in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 16:935–947

    Article  PubMed  Google Scholar 

  20. Rodeo SA, Suzuki K, Deng XH, Wozney J, Warren RF (1999) Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. Am J Sports Med 27:476–488

    PubMed  CAS  Google Scholar 

  21. Mihelic R, Pecina M, Jelic M, Zoricic S, Kusec V, Simic P, Bobinac D, Lah B, Legovic D, Vukicevic S (2004) Bone morphogenetic protein-7 (osteogenic protein-1) promotes tendon graft integration in anterior cruciate ligament reconstruction in sheep. Am J Sports Med 32:1619–1625

    Article  PubMed  Google Scholar 

  22. Ma CB, Kawamura S, Deng XH, Ying L, Schneidkraut J, Hays P, Rodeo SA (2007) Bone morphogenetic proteins-signaling plays a role in tendon-to-bone healing: a study of rhBMP-2 and noggin. Am J Sports Med 35:597–604

    Article  PubMed  Google Scholar 

  23. Hettrich CM, Beamer BS, Bedi A, Deland K, Deng XH, Ying L, Lane J, Rodeo SA (2012) The effect of rhPTH on the healing of tendon to bone in a rat model. J Orthop Res 30:769–774

    Article  PubMed  CAS  Google Scholar 

  24. Gulotta LV, Kovacevic D, Ying L, Ehteshami JR, Montgomery S, Rodeo SA (2008) Augmentation of tendon-to-bone healing with a magnesium-based bone adhesive. Am J Sports Med 36:1290–1297

    Article  PubMed  Google Scholar 

  25. Lui P, Zhang P, Chan K, Qin L (2010) Biology and augmentation of tendon-bone insertion repair. J Orthop Surg Res 5:59

    Article  PubMed  Google Scholar 

  26. Matsumoto T, Kubo S, Sasaki K, Kawakami Y, Oka S, Sasaki H, Takayama K, Tei K, Matsushita T, Mifune Y, Kurosaka M, Kuroda R (2012) Acceleration of tendon-bone healing of anterior cruciate ligament graft using autologous ruptured tissue. Am J Sports Med 40:1296–1302

    Article  PubMed  Google Scholar 

  27. Mutsuzaki H, Kanamori A, Ikeda K, Hioki S, Kinugasa T, Sakane M (2012) Effect of calcium phosphate-hybridized tendon graft in anterior cruciate ligament reconstruction: a randomized controlled trial. Am J Sports Med 40:1772–1780

    Article  PubMed  Google Scholar 

  28. Bedi A, Kovacevic D, Fox AJ, Imhauser CW, Stasiak M, Packer J, Brophy RH, Deng XH, Rodeo SA (2010) Effect of early and delayed mechanical loading on tendon-to-bone healing after anterior cruciate ligament reconstruction. J Bone Joint Surg Am 92:2387–2401

    Article  PubMed  Google Scholar 

  29. Brophy RH, Kovacevic D, Imhauser CW, Stasiak M, Bedi A, Fox AJ, Deng XH, Rodeo SA (2011) Effect of short-duration low-magnitude cyclic loading versus immobilization on tendon-bone healing after ACL reconstruction in a rat model. J Bone Joint Surg Am 93:381–393

    Article  PubMed  Google Scholar 

  30. Iorio R, Vadalà A, Argento G, Di Sanzo V, Ferretti A (2007) Bone tunnel enlargement after ACL reconstruction using autologous hamstring tendons: a CT study. Int Orthop 31:49–55

    Article  PubMed  Google Scholar 

  31. Vadalà A, Iorio R, De Carli A, Argento G, Di Sanzo V, Conteduca F, Ferretti A (2007) The effect of accelerated, brace free, rehabilitation on bone tunnel enlargement after ACL reconstruction using hamstring tendons: a CT study. Knee Surg Sports Traumatol Arthrosc 15:365–371

    Article  PubMed  Google Scholar 

  32. Petersen W, Laprell H (2000) Insertion of autologous tendon grafts to the bone: a histological and immunohistochemical study of hamstring and patellar tendon grafts. Knee Surg Sports Traumatol Arthrosc 8:26–31

    Article  PubMed  CAS  Google Scholar 

  33. Sasaki K, Kuroda R, Ishida K, Kubo S, Matsumoto T, Mifune Y, Kinoshita K, Tei K, Akisue T, Tabata Y, Kurosaka M (2008) Enhancement of tendon-bone osteointegration of anterior cruciate ligament graft using granulocyte colony-stimulating factor. Am J Sports Med 36:1519–1527

    Article  PubMed  Google Scholar 

  34. Lind M, Feller J, Webster KE (2009) Bone tunnel widening after anterior cruciate ligament reconstruction using EndoButton or EndoButton continuous loop. Arthroscopy 25:1275–1280

    Article  PubMed  Google Scholar 

  35. Kamelger FS, Onder U, Schmoelz W, Tecklenburg K, Arora R, Fink C (2009) Suspensory fixation of grafts in anterior cruciate ligament reconstruction: a biomechanical comparison of 3 implants. Arthroscopy 25:767–776

    Article  PubMed  Google Scholar 

  36. Sabat D, Kundu K, Arora S, Kumar V (2011) Tunnel widening after anterior cruciate ligament reconstruction: a prospective randomized computed tomography–based study comparing 2 different femoral fixation methods for hamstring graft. Arthroscopy 27:776–783

    Article  PubMed  Google Scholar 

  37. Giron F, Aglietti P, Cuomo P, Mondanelli N, Ciardullo A (2005) Anterior cruciate ligament reconstruction with double-looped semitendinosus and gracilis tendon graft directly fixed to cortical bone: 5-year results. Knee Surg Sports Traumatol Arthrosc 13:81–91

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grants from 973 Project from the Ministry of Science and Technology of China (No. 2009CB930000), the Young Project of National Natural Science Foundation of China (81000816) and the Project of Shanghai Municipal Science and Technology Commission (11JC1401700).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, S., Li, H., Chen, C. et al. Cationised gelatin and hyaluronic acid coating enhances polyethylene terephthalate artificial ligament graft osseointegration in porcine bone tunnels. International Orthopaedics (SICOT) 37, 507–513 (2013). https://doi.org/10.1007/s00264-012-1694-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-012-1694-3

Keywords

Navigation