Skip to main content
Log in

In vitro effects on mobile polyethylene insert under highly demanding daily activities: stair climbing

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Wear and survival of total joint replacements do not depend on the duration of the implant in situ, but rather on the amount of its use, i.e. the patient’s activity level. With this in mind, the present study was driven by two questions: (1) How does total knee replacement (TKR) respond to the simulation of daily highly demanding activities? (2) Are certain activities to be advised against or, on the contrary, useful to implanted patients, in order to reduce wear of TKR and its related problems?

Methods

One set of the same total knee prosthesis (TKP), equal in design and size, was tested on a three-plus-one knee joint simulator for two million cycles using a highly demanding daily load waveform, replicating a stair-climbing movement. The results were compared with a set of TKP previously tested with the ISO level walking task. A digital microscope was used to characterise the superficial structure of all the TKPs. Gravimetric and micro-Raman spectroscopic analyses were carried out on the polyethylene inserts. Visual comparison with in vivo explants was carried out.

Results

The average volumetric mass loss after two million cycles was 44 ± 6 mm3. Microscope examinations showed some deep scratches along the flexion/extension movements for all the components. Also, the metallic backside surface showed intense non-linear scratches and the polyethylene counterface was characterised by some craters. A decrease in crystallinity, induced by mechanical stress was observed on all polyethylene components and was quantitatively confirmed by the orthorhombic fraction αo value.

Conclusions

The results of this study demonstrated that the forces and motion sustained by the knee are highly activity-dependent. Moreover, this test confirmed that under more severe conditions, the material properties change according to a different wear mechanism and a decrease in crystallinity occurs. Loading characteristics for specific activities should be considered for the design of functional and robust TKRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. RIPO (2010) Register of the Orthopaedic Prosthetic Implants. Available from: https://ripo.cineca.it/

  2. Carr AJ, Robertsson O, Graves S et al (2012) Knee replacement. Lancet 379:1331–1340. doi:10.1016/S0140-6736(11)60752-6

    Article  PubMed  Google Scholar 

  3. Vasileios N, Dimitrios C, Babis G (2014) Common controversies in total knee replacement surgery: current evidence. World J Orthop 5(4):460–468

    Article  Google Scholar 

  4. Falez F (2014) Knee arthroplasty today. Int Orthop 38:221–225. doi:10.1007/s00264-013-2274-x

    Article  PubMed Central  PubMed  Google Scholar 

  5. Jonas SC, Shah R, Mitra A, Deo SD (2014) 5-Year cost/benefit analysis of revision of failed unicompartmental knee replacements (UKRs); not “just” a primary total knee replacement (TKR). Knee 21:840–842. doi:10.1016/j.knee.2014.04.012

    Article  PubMed  Google Scholar 

  6. Bosco JA, Karkenny AJ, Hutzler LH et al (2014) Cost burden of 30-day readmissions following medicare total hip and knee arthroplasty. J Arthroplasty 29:903–905. doi:10.1016/j.arth.2013.11.006

    Article  PubMed  Google Scholar 

  7. Rohman L, Hadi S, Whitwell G (2014) Surgeons’ knowledge about the costs of orthopaedic implants. J Orthop Surg 22:221–223

    Google Scholar 

  8. Kapadia BH, McElroy MJ, Issa K et al (2014) The economic impact of periprosthetic infections following total knee arthroplasty at a specialized tertiary-care center. J Arthroplasty 29:929–932. doi:10.1016/j.arth.2013.09.017

    Article  PubMed  Google Scholar 

  9. Schwiesau J, Schilling C, Kaddick C et al (2013) Definition and evaluation of testing scenarios for knee wear simulation under conditions of highly demanding daily activities. Med Eng Phys 35:591–600. doi:10.1016/j.medengphy.2012.07.003

    Article  PubMed  Google Scholar 

  10. Morlock M, Schneider E, Bluhm A et al (2001) Duration and frequency of every day activities in total hip patients. J Biomech 34:873–881

    Article  CAS  PubMed  Google Scholar 

  11. Windsor RE, Scuderi GR, Moran MC, Insall JN (1989) Mechanisms of failure of the femoral and tibial components in total knee arthroplasty. Clin Orthop Relat Res 1989(248):15–19. doi:10.1097/00003086-198911000-00005, discussion 19–20

    Google Scholar 

  12. Cheng T, Pan X, Liu T, Zhang X (2012) Tibial component designs in primary total knee arthroplasty: should we reconsider all-polyethylene component? Knee Surg Sport Traumatol Arthrosc 20:1438–1449. doi:10.1007/s00167-011-1682-y

    Article  Google Scholar 

  13. Grupp TM, Kaddick C, Schwiesau J et al (2009) Fixed and mobile bearing total knee arthroplasty—influence on wear generation, corresponding wear areas, knee kinematics and particle composition. Clin Biomech 24:210–217

    Article  CAS  Google Scholar 

  14. Schmalzried TP, Shepherd EF, Dorey FJ et al (2000) The John Charnley award. Wear is a function of use, not time. Clin Orthop Relat Res 381:36–46

    Article  PubMed  Google Scholar 

  15. Rowe PJ, Myles CM, Walker C, Nutton R (2000) Knee joint kinematics in gait and other functional activities measured using flexible electrogoniometry: how much knee motion is sufficient for normal daily life? Gait Posture 12:143–155. doi:10.1016/S0966-6362(00)00060-6

    Article  CAS  PubMed  Google Scholar 

  16. Protopapadaki A, Drechsler WI, Cramp MC et al (2007) Hip, knee, ankle kinematics and kinetics during stair ascent and descent in healthy young individuals. Clin Biomech 22:203–210. doi:10.1016/j.clinbiomech.2006.09.010

    Article  Google Scholar 

  17. Brockett CL, Jennings LM, Fisher J (2011) The wear of fixed and mobile bearing unicompartmental knee replacements. Proc Inst Mech Eng H 225:511–519. doi:10.1177/2041303310393824

    Article  CAS  PubMed  Google Scholar 

  18. DesJardins JD, Banks SA, Benson LC et al (2007) A direct comparison of patient and force-controlled simulator total knee replacement kinematics. J Biomech 40:3458–3466. doi:10.1016/j.jbiomech.2007.05.022

    Article  PubMed  Google Scholar 

  19. Desjardins JD, Walker PS, Haider H, Perry J (2000) The use of a force-controlled dynamic knee simulator to quantify the mechanical performance of total knee replacement designs during functional activity. J Biomech 33:1231–1242

    Article  CAS  PubMed  Google Scholar 

  20. Affatato S, Grillini L, Battaglia S et al (2013) Does knee implant size affect wear variability? Tribol Int 66:174–181

    Article  CAS  Google Scholar 

  21. Essner A, Herrera L, Hughes P, Kester M (2011) The influence of material and design on total knee replacement wear. J Knee Surg 24:9–17

    Article  PubMed  Google Scholar 

  22. Haider H (2009) Tribological assessment of UHMWPE in the knee. In: Kurtz S (ed) UHMWPE biomaterials handbook, 2nd edn. Elsevier, Amsterdam, pp 381–408

  23. ISO DIS 14243-1 (2002) Implants for surgery—Wear of total knee joint prostheses—Part 1: loading and displacement paramenters for wear-testing machines with load control and corresponding enviromental conditions for tests. International Organization for Standardization, Geneva

  24. ISO DIS 14243-3 (2004) Implants for surgery—Wear of total knee joint prostheses—Part 1: loading and displacement paramenters for wear-testing machines with displacement control and corresponding enviromental conditions for tests. International Organization for Standardization, Geneva

  25. Affatato S, Bracco P, Costa L et al (2012) In vitro wear performance of standard, crosslinked, and vitamin-E-blended UHMWPE. J Biomed Mater Res A 100:554–60. doi:10.1002/jbm.a.33297

    Article  PubMed  Google Scholar 

  26. Knight LA, Pal S, Coleman JC et al (2007) Comparison of long-term numerical and experimental total knee replacement wear during simulated gait loading. J Biomech 40:1550–8. doi:10.1016/j.jbiomech.2006.07.027

    Article  PubMed  Google Scholar 

  27. Brach del Prever EM, Bistolfi A, Bracco P, Costa L (2009) UHMWPE for arthroplasty: past or future? J Orthop Traumatol 10:1–8. doi:10.1007/s10195-008-0038-y

    Article  PubMed Central  PubMed  Google Scholar 

  28. Cottrell JM, Babalola O, Furman BS, Wright TM (2006) Stair ascent kinematics affect UHMWPE wear and damage in total knee replacements. J Biomed Mater Res Part B Appl Biomater 78:15–19. doi:10.1002/jbm.b.30451

    Article  PubMed  Google Scholar 

  29. Battaglia S, Taddei P, Tozzi S et al (2014) Toward the interpretation of the combined effect of size and body weight on the tribological performance of total knee prostheses. Int Orthop. doi:10.1007/s00264-014-2297-y

    PubMed Central  PubMed  Google Scholar 

  30. Schwiesau J, Schilling C, Utzschneider S et al (2013) Knee wear simulation under conditions of highly demanding daily activities—Influence on an unicompartmental fixed bearing knee design. Med Eng Phys 35:1204–1211. doi:10.1016/j.medengphy.2012.12.015

    Article  PubMed  Google Scholar 

  31. Battaglia S, Belvedere C, Abdel Jaber S, Affatato S, D’Angeli V, Leradini A (2014) A new protocol from real joint motion data for wear simulation in total knee arthroplasty: stair climbing. Med Eng Phys 36:1605–1610

    Article  PubMed  Google Scholar 

  32. Wimmer MA, Andriacchi TP, Natarajan RN et al (1998) A striated pattern of wear in ultrahigh-molecular-weight polyethylene components of Miller-Galante total knee arthroplasty. J Arthroplasty 13:8–16. doi:10.1016/S0883-5403(98)90069-9

    Article  CAS  PubMed  Google Scholar 

  33. Affatato S, Vandelli C, Bordini B, Toni A (2001) Fluid absorption study in ultra-high molecular weight polyethylene (UHMWPE) sterilized and unsterilized acetabular cups. Proc Inst Mech Eng [H] 215:107–111

    Article  CAS  Google Scholar 

  34. ISO DIS 14243-2 (2009) Implants for surgery—Wear of total knee-joint prostheses—Part 2: methods of measurement. International Organization for Standardization

  35. Belvedere C, Tamarri S, Notarangelo DP et al (2013) Three-dimensional motion analysis of the human knee joint: comparison between intra- and post-operative measurements. Knee Surg Sports Traumatol Arthrosc 21:2375–83. doi:10.1007/s00167-012-2271-4

    Article  CAS  PubMed  Google Scholar 

  36. Catani F, Belvedere C, Ensini A et al (2011) In-Vivo knee kinematics in rotationally unconstrained total knee arthroplasty. J Orthop Res 29:1484–1490. doi:10.1002/jor.21397

    Article  PubMed  Google Scholar 

  37. Fantozzi S, Benedetti MG, Leardini A et al (2003) Fluoroscopic and gait analysis of the functional performance in stair ascent of two total knee replacement designs. Gait Posture 17:225–234. doi:10.1016/S0966-6362(02)00096-6

    Article  PubMed  Google Scholar 

  38. D’Angeli V, Belvedere C, Ortolani M et al (2013) Load along the femur shaft during activities of daily living. J Biomech 46:2002–2010. doi:10.1016/j.jbiomech.2013.06.012

    Article  PubMed  Google Scholar 

  39. D’Angeli V, Belvedere C, Ortolani M et al (2014) Load along the tibial shaft during activities of daily living. J Biomech 47:1198–1205. doi:10.1016/j.jbiomech.2014.01.045

    Article  PubMed  Google Scholar 

  40. Leardini A, Sawacha Z, Paolini G et al (2007) A new anatomically based protocol for gait analysis in children. Gait Posture 26:560–571. doi:10.1016/j.gaitpost.2006.12.018

    Article  PubMed  Google Scholar 

  41. Cappozzo A, Catani F, Della Croce U, Leardini A (1995) Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech 10:171–178. doi:10.1016/0268-0033(95)91394-T

    Article  Google Scholar 

  42. McHellop H, Lu BBP (1992) Friction, lubrication and wear of cobalt-chromium, alumina and zirconia hip prostheses compared on a joint simulator. In: Trans 38th Ann Meeting Orthop Res Soc, Washington D.C., p 402

  43. Mutter R, Stille W, Strobl G (1993) Transition regions and surface melting in partially crystalline polyethylene: a Raman spectroscopic study. J Polym Sci B Polym Phys 31:99–105

    Article  CAS  Google Scholar 

  44. Galetz MC, Glatzel U (2010) An activated energy approach for accelerated testing of the deformation of UHMWPE in artificial joints. J Mech Behav Biomed Mater 3:331–338. doi:10.1016/j.jmbbm.2010.01.004

    Article  PubMed  Google Scholar 

  45. Simis KS, Bistolfi A, Bellare A, Pruitt LA (2006) The combined effects of crosslinking and high crystallinity on the microstructural and mechanical properties of ultra high molecular weight polyethylene. Biomaterials 27:1688–94

    Article  CAS  PubMed  Google Scholar 

  46. Karuppiah KSK, Bruck AL, Wang J, Xu ZH, Li X (2008) Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity. Acta Biomater 4:1401–1410

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Alberto Leardini (Movement Analysis Laboratory, Istituto Ortopedico Rizzoli, Bologna) for his help with the data from fluoroscopy. This work was partially supported by the Italian Program of Donation for Research “5 per mille”, year 2010.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saverio Affatato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaber, S.A., Taddei, P., Tozzi, S. et al. In vitro effects on mobile polyethylene insert under highly demanding daily activities: stair climbing. International Orthopaedics (SICOT) 39, 1433–1440 (2015). https://doi.org/10.1007/s00264-014-2622-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-014-2622-5

Keywords

Navigation