Skip to main content

Advertisement

Log in

Three-Dimensional Evaluation of Breast Augmentation and the Influence of Anatomic and Round Implants on Operative Breast Shape Changes

  • Original Article
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

Currently, postoperative outcome analysis in breast augmentation is essentially subjective, and objective evaluation of treatment efficacy is lacking. This study evaluates the influence of anatomic and round implant parameters on breast contour changes after subpectoral breast augmentation using three-dimensional (3D) surface imaging.

Methods

3D surface breast scans of 17 patients (34 breasts) undergoing subpectoral breast augmentation with round implants and of ten patients (20 breasts) receiving anatomic implants via an axillary approach under endoscopic assistance or a submammary fold incision were obtained before and 6 months postoperatively. 3D linear distance, breast volume, and surface measurement were correlated with the implanted round and anatomic implant parameters, and the resulting breast shape changes were evaluated.

Results

Total breast volume changed in correlation with the implant size (2.4 % difference; r = 0.894; p < 0.001). Implant volume and type influence the nipple-to-inframammary fold distance (N-IMF). Every inserted 100 ml implant volume enlarges the N-IMF distance by 0.8 cm (anatomic > round; p = 0.01). Postoperatively, the IMF dropped by an average of 1.3 cm for round implants and by 1.1 cm for anatomic implants, without relevant differences between the applied surgical incision and the selected implants (p > 0.05). Breast projection increased significantly more with anatomic implants (2.4 cm) than with round implants (1.7 cm) (p = 0.01). The breast projection increase was 22 % less than expected for round implants and 25 % less than expected for anatomic implants based on the manufacturer implant parameters (p < 0.01), without essential differences regarding the surgical incision.

Conclusions

3D breast shape changes induced by round and anatomic implants after subpectoral augmentation mammaplasty are objectively documented including breast projection, volume, and N-IMF distance changes. 3D surface imaging may have a potential clinical contribution to objective surgical outcome research.

Level of Evidence III

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors at www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hedén P, Jernbeck J, Hober M (2001) Breast augmentation with anatomical cohesive gel implants: the world’s largest current experience. Clin Plast Surg 28:531–552

    PubMed  Google Scholar 

  2. Young VL, Nemecek JR, Nemecek DA (1994) The efficacy of breast augmentation: breast size increase, patient satisfaction, and psychological effects. Plast Reconstr Surg 94:958–969

    Article  PubMed  CAS  Google Scholar 

  3. Galdino GM, Nahabedian M, Chiaramonte M, Geng JZ, Klatsky S, Manson P (2002) Clinical applications of three-dimensional photography in breast surgery. Plast Reconstr Surg 110:58–70

    Article  PubMed  Google Scholar 

  4. Ferreira MC (2000) Evaluation of results in aesthetic plastic surgery: preliminary observations on mammaplasty. Plast Reconstr Surg 106:1630–1635

    Article  PubMed  CAS  Google Scholar 

  5. Tepper OM, Unger JG, Small KH, Feldman D, Kumar N, Choi M, Karp NS (2010) Mammometrics: the standardization of aesthetic and reconstructive breast surgery. Plast Reconstr Surg 125:393–400

    Article  PubMed  CAS  Google Scholar 

  6. Chavoin JP, Teysseyre A, Grolleau JL (2005) Morphobreast: patient’s data bank management for objective selection of implant’s volume in hypotrophic breasts. Ann Chir Plast Esthet 50:487–493

    Article  PubMed  CAS  Google Scholar 

  7. Smith DJ Jr, Palin WE Jr, Katch VL, Bennett JE (1986) Breast volume and anthropomorphic measurements: normal values. Plast Reconstr Surg 78:331–335

    Article  PubMed  Google Scholar 

  8. Westreich M (1997) Anthropomorphic breast measurement: protocol and results in 50 women with aesthetically perfect breasts and clinical application. Plast Reconstr Surg 100:468–479

    Article  PubMed  CAS  Google Scholar 

  9. Bouman FG (1970) Volumetric measurement of the human breast and breast tissue before and during mammaplasty. Br J Plast Surg 23:263–264

    Article  PubMed  CAS  Google Scholar 

  10. Schultz RC, Dolezal RF, Nolan J (1986) Further applications of Archimedes’ principle in the correction of asymmetrical breasts. Ann Plast Surg 16:98–101

    Article  PubMed  CAS  Google Scholar 

  11. Ingleby H (1949) Changes in breast volume in a group of normal young women. Bull Int Assoc Med Mus 29:87–92

    Google Scholar 

  12. Campaigne BN, Katch VL, Freedson P, Sady S, Katch FI (1979) Measurement of breast volume in females: description of a reliable method. Ann Hum Biol 6:363–367

    Article  PubMed  CAS  Google Scholar 

  13. Kalbhen CL, McGill JJ, Fendley PM, Corrigan KW, Angelats J (1999) Mammographic determination of breast volume: comparing different methods. AJR Am J Roentgenol 173:1643–1649

    PubMed  CAS  Google Scholar 

  14. Rudolph R, Forcier N (2009) Calculation of silicone breast implant volumes using breast magnetic resonance imaging. Aesthet Surg J 29:310–313

    Article  PubMed  Google Scholar 

  15. Pozzobon AV, Sabino Neto M, Veiga DF, Abla LE, Pereira JB, Biasi TL, Ferreira LM, Yamashita LA, Kawano F, Nakano EM, Shigueoka DC (2009) Magnetic resonance images and linear measurements in the surgical treatment of breast asymmetry. Aesth Plast Surg 33:196–203

    Article  Google Scholar 

  16. Nipshagen MD, Beekman WH, Esmé DL, de Becker J (2007) Anatomically shaped breast prosthesis in vivo: a change of dimension? Aesth Plast Surg 31:540–543

    Article  Google Scholar 

  17. Tegtmeier RE (1978) A quick, accurate mammometer. Ann Plast Surg 1:625–626

    Article  PubMed  CAS  Google Scholar 

  18. Kirianoff TG (1974) Volume measurements of unequal breasts. Plast Reconstr Surg 54:616

    Article  PubMed  CAS  Google Scholar 

  19. Grossman AJ, Roudner LA (1980) A simple means for accurate breast volume determination. Plast Reconst Surg 66:851–852

    Article  PubMed  CAS  Google Scholar 

  20. Brody GS (1981) Breast implant size selection and patient satisfaction. Plast Reconstr Surg 68:611–613

    Article  PubMed  CAS  Google Scholar 

  21. Kovacs L, Eder M, Hollweck R, Zimmermann A, Settles M, Schneider A, Endlich M, Mueller A, Schwenzer-Zimmerer K, Papadopulos NA, Biemer E (2007) Comparison between breast volume measurement using 3D surface imaging and classical techniques. Breast 16:137–145

    Article  PubMed  Google Scholar 

  22. Bulstrode N, Bellamy E, Shrotria S (2001) Breast volume assessment: comparing five different techniques. Breast 10:117–123

    Article  PubMed  CAS  Google Scholar 

  23. Tebbetts JB (2002) A system for breast implant selection based on patient tissue characteristics and implant—soft tissue dynamics. Plast Reconstr Surg 109:1396–1409

    Article  PubMed  Google Scholar 

  24. Tebbetts JB, Adams WP (2005) Five critical decisions in breast augmentation using five measurements in 5 minutes: the high-five decision support process. Plast Reconstr Surg 116:2005–2016

    PubMed  CAS  Google Scholar 

  25. Adams WP (2007) The high-five process: tissue-based planning for breast augmentation. Plast Surg Nurs 27:197–201

    PubMed  Google Scholar 

  26. The BodyLogic System™ (2011) Mentor, Santa Barbara, CA. http://www.mentorwwllc.com/global/physician-information/bodylogic.htm. Accessed 10 Aug 2010

  27. Tepper OM, Small KH, Unger JG, Feldman DL, Kumar N, Choi M, Karp NS (2009) 3D analysis of breast augmentation defines operative changes and their relationship to implant dimensions. Ann Plast Surg 62:570–575

    Article  PubMed  CAS  Google Scholar 

  28. Esme DL, Bucksch A, Beekman WH (2009) Three-dimensional laser imaging as a valuable tool for specifying changes in breast shape after augmentation mammaplasty. Aesth Plast Surg 33:191–195

    Article  Google Scholar 

  29. Eder M, Papadopulos NA, Kovacs L (2007) Re: virtual 3-dimensional modeling as a valuable adjunct to aesthetic and reconstructive breast surgery. Am J Surg 194:563–565

    Article  PubMed  Google Scholar 

  30. Eder M, Waldenfels FV, Sichtermann M, Schuster T, Papadopulos NA, Machens HG, Biemer E, Kovacs L (2011) Three-dimensional evaluation of breast contour and volume changes following subpectoral augmentation mammaplasty over 6 months. J Plast Reconstr Aesthet Surg 64:1495–1502

    Google Scholar 

  31. Kovacs L, Eder M, Papadopulos NA, Biemer E (2005) Validating 3-dimensional imaging of the breast. Ann Plast Surg 55:695–696

    Article  PubMed  Google Scholar 

  32. Kovacs L, Eder M, Hollweck R, Zimmermann A, Settles M, Schneider A, Udosic K, Schwenzer-Zimmerer K, Papadopulos NA, Biemer E (2006) New aspects of breast volume measurement using 3-dimensional surface imaging. Ann Plast Surg 57:602–610

    Article  PubMed  CAS  Google Scholar 

  33. Eder M, Schneider A, Feussner H, Zimmermann A, Höhnke C, Papadopulos NA, Kovacs L (2008) Breast volume assessment based on 3D surface geometry: verification of the method using MR imaging. Biomed Tech 53:112–121

    Article  Google Scholar 

  34. Kovacs L, Yassouridis A, Zimmermann A, Brockmann G, Wöhnl A, Blaschke M, Eder M, Schwenzer-Zimmerer K, Rosenberg R, Papadopulos NA, Biemer E (2006) Optimization of 3-dimensional imaging of the breast region with 3-dimensional laser scanners. Ann Plast Surg 56:229–236

    Article  PubMed  CAS  Google Scholar 

  35. Losken A, Seify H, Denson DD, Paredes AA Jr, Carlson GW (2005) Validating three-dimensional imaging of the breast. Ann Plast Surg 54:471–476

    Article  PubMed  CAS  Google Scholar 

  36. Cárdenas-Camarena L, Encinas-Brambila J (2009) Round gel breast implants or anatomic gel breast implants: which is the best choice? Aesth Plast Surg 33:743–751

    Article  Google Scholar 

  37. Hamas RS (1999) The postoperative shape of round and teardrop saline-filled breast implants. Aesthet Surg J 5:369–374

    Article  Google Scholar 

  38. Hidalgo DA (2000) Breast augmentation: choosing the optimal incision, implant, and pocket plane. Plast Reconstr Surg 105:2202–2216

    Article  PubMed  CAS  Google Scholar 

  39. Friedman T, Davidovitch N, Scheflan M (2006) Comparative double-blind clinical study on round versus shaped cohesive gel implants. Aesthet Surg J 26:530–536

    Article  PubMed  CAS  Google Scholar 

  40. Bronz G (2002) A comparison of naturally shaped and round implants. Aesthet Surg J 22:238–246

    Article  PubMed  Google Scholar 

  41. Hall-Findlay EJ (2010) The three breast dimensions: analysis and effecting change. Plast Reconstr Surg 125:1632–1642

    Article  PubMed  CAS  Google Scholar 

  42. Vandeput JJ, Nelissen M (2002) Considerations on anthropometric measurements of the female breast. Aesth Plast Surg 26:348–355

    Article  CAS  Google Scholar 

  43. Vandeput JJ (2006) Predictibility in breast augmentation. Eur J Plast Surg 28:451–457

    Article  Google Scholar 

  44. Eder M, Waldenfels FV, Swobodnik A, Klöppel M, Pape AK, Schuster T, Raith S, Kitzler E, Papadopulos NA, Machens HG, Kovacs L (2012) Objective breast symmetry evaluation using 3-D surface imaging. Breast 21:152–158

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Dr. A. Haase, Director of the Institute of Medical Engineering (IMETUM), Technische Universität München, Germany for his cooperation and infrastructural support. In addition, they thank the whole medical staff of the Department of Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Technische Universität München, Germany involved in the surgical treatment of the study patients.

Conflict of interest

The authors declare that they have no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laszlo Kovacs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovacs, L., Eder, M., Zimmermann, A. et al. Three-Dimensional Evaluation of Breast Augmentation and the Influence of Anatomic and Round Implants on Operative Breast Shape Changes. Aesth Plast Surg 36, 879–887 (2012). https://doi.org/10.1007/s00266-012-9892-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-012-9892-3

Keywords

Navigation