Skip to main content

Advertisement

Log in

Ab initio study of the high-pressure behavior of CaSiO3 perovskite

  • Original papers
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Using density functional simulations, within the generalized gradient approximation and projector-augmented wave method, we study structures and energetics of CaSiO3 perovskite in the pressure range of the Earth’s lower mantle (0–150 GPa). At zero Kelvin temperature the cubic \((Pm\; \bar 3\,m)\) CaSiO3 perovskite structure is unstable in the whole pressure range, at low pressures the orthorhombic (Pnam) structure is preferred. At 14.2 GPa there is a phase transition to the tetragonal (I4/mcm) phase. The CaIrO3-type structure is not stable for CaSiO3. Our results also rule out the possibility of decomposition into oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. In the atomic units, the unit of lenght is 1bohr=0.529 Å

  2. \(1\,\text{eV}=1.602\times10^{-19}\,\text{J}=96.485\,\text{kJ/mol}\)

  3. f.u=formula unit

References

  • Anderson OL, Liebermann RC (1970) Equations for the elastic constants and their pressure derivatives for three cubic lattices and some geophysical applications. Phys Earth Planet Inter 3:61–85

    CAS  Google Scholar 

  • Andrault D, Fiquet G, Guyot F, Hanfland M (1998) Pressure-induced Landau-type transition in stishovite. Science 285:720–724

    Google Scholar 

  • Akber-Knutson S, Bukowinski MST, Matas J (2002) On the structure and compressibility of CaSiO3 perovskite. Geophys Res Lett 29:1034–1037

    Google Scholar 

  • Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Google Scholar 

  • Blöchl PE, Först CJ, Schimpl J (2003) Projector augmented wave method: ab initio molecular dynamics with full wave functions. Bull Mater Sci 33:33–41

    Google Scholar 

  • Caracas R, Wentzcovitch R, Price GD, Brodholt J (2005) Equation of state and stability of CaSiO3 under pressure.Geophys Res Lett 32(6):L06306

    Google Scholar 

  • Catti M (2001) High-pressure stability, structure and compressibility of Cmcm-MgAl2O4: an ab initio study. Phys Chem Miner 28:729–736

    CAS  Google Scholar 

  • Chizmeshya AVG, Wolf GH, McMillan PF (1996) First-principles calculation of the equation-of-state, stability, and polar optic modes of CaSiO3 perovskite. Geophys Res Lett 23:2725–2728 (correction: ibid. (1998), 25:711)

    Google Scholar 

  • Habas MP, Dovesi R, Lichanot A (1998) The B1-B2 phase transition in alkaline-earth oxides: a comparison of ab initio Hartree–Fock and density functional calculations. J Phys Condens Matter 10:6897–6909

    CAS  Google Scholar 

  • Hemley RJ, Prewitt CT, Kingma KJ (1994) High-pressure behaviour of silica. In: Heaney PJ, Prewitt CT, Gibbs GV (eds) Silica: physical behaviour, geochemistry and materials applications: reviews in Mineralogy. Mineralogical Society of America, Washington DC, pp 41–81

    Google Scholar 

  • Irifune T (1994) Absence of an aluminous phase in the upper part of the earth’s lower mantle. Nature 370:131–133

    Article  CAS  Google Scholar 

  • Ita JJ, Stixrude L (1992) Petrology, elasticity and composition of the mantle transition zone. J Geophys Res 97:6849–6866

    CAS  Google Scholar 

  • Jeanloz R, Ahrens TJ (1979) B1-B2 transition in calcium oxide from shockwave and diamond-cell experiments. Science 206:829–830

    CAS  Google Scholar 

  • Karki BB, Warren MC, Stixrude L, Ackland GJ, Crain J (1997) Ab initio studies of high-pressure structural transformation in silica. Phys Rev B 55:3465–3471

    CAS  Google Scholar 

  • Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane wave basis set. Phys Rev B 54:11169–11186

    CAS  Google Scholar 

  • Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:758–1775

    Google Scholar 

  • Kurashina T, Hirose K, Ono S, Sata N, Ohishi Y (2004) Phase transition in AL-bearing CaSiO3 perovskite: implications for seismic discontinuities in the lower mantle. Phys Earth Inter 145:67–74

    CAS  Google Scholar 

  • Mao HK, Chen LC, Hemley RJ, Jephcoat AP, Wu Y, Bassett WA (1989) Stability and equation of state of CaSiO3-perovskite to 134 GPa. J Geophys Res 94:17889–17894

    Google Scholar 

  • Magyari-Köpe B, Vitos L, Johansson B, Kollar J (2002a) Model structure of perovskites: cubic-orthorhombic phase transition. Comp Mat Sci 25:615–621

    Google Scholar 

  • Magyari-Köpe B, Vitos L, Grimavall G, Johansson B, Kollar J (2002b) Low-temperature crystal structure of CaSiO3 perovskite: an ab initio total energy study. Phys Rev B 65:193107

    Google Scholar 

  • Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Google Scholar 

  • Murakami M, Hirose K, Ono S, Ohishi Y (2003) Stability of CaCl2-type and A-PbO2-type SiO2 at high pressure and temperature determined by in-situ X-ray measurements. Geophys Res Lett 30:1207–1210

    Google Scholar 

  • Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858

    Article  CAS  PubMed  Google Scholar 

  • Ono S, Ohishi Y, Mibe K (2005) Phase transition of Ca-perovskite and stability of Al-bearing Mg-perovksite in the lower mantle. Am Mineral 89:1480–1485

    Google Scholar 

  • Ono S, Oganov AR, Ohishi (2005) In situ observations of phase transitions between perovskite and CalrO3-type phase in MgSiO3 and pyrolitic mantle composition. Earth Planet Sci Lett (submitted)

  • Oganov AR, Brodholt JP (2000) High-pressure phases in the Al2SiO5 system and the problem of aluminous phase in Earth’s lower mantle: ab initio pseudopotential calculations. Phys Chem Miner 27:430–439

    Article  CAS  Google Scholar 

  • Oganov AR, Brodholt JP, Price GD (2002) Ab initio theory of thermoelasticity and phase transitions in minerals. EMU Notes in Mineralogy v.4 (‘Energy Modelling in Minerals’, edited by C.M. Gramaccioli), pp 83–170

  • Oganov AR, Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D”layer. Nature 430:445–448

    Article  CAS  PubMed  Google Scholar 

  • Oganov AR, Price GD (2005) Stability of MgSiO3 perovskite and post-perovskite polymorphs to decomposition at lower mantle conditions. J Chem Phys

  • O’Neill B, Jeanloz R (1990) Experimental petrology of the lower mantle: a natural peridote taken to 54 GPa. Geophys Res Lett 17:1477–1480

    CAS  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  • Richet P, Mao HK, Bell PM (1988) Static compression and equation of state of CaO to 1.35 Mbar. J Geophys Res 93:15279–15288

    CAS  Google Scholar 

  • Ross NL, Shu JF, Hazen RM, Gasparik T (1990) High-pressure crystal chemistry of stishovite. Am Mineral 75:739–747

    CAS  Google Scholar 

  • Sherman DM (1993) Equation of state, elastic properties, and stability of CaSiO3 perovskite—1st principles (periodic Hartree-Fock) results. J Geophys Res 98:19795–19805

    CAS  Google Scholar 

  • Shieh SR, Duffy TS, Li B (2002) Ab initio lattice dynamics and charge fluctuations in alkaline-earth oxides. Phys Rev Lett 89:22555071

    Article  Google Scholar 

  • Shim SH, Duffy S, Shen G (2000a) The equation of state of CaSiO3 perovskite to 108 GPa at 300 K. Phys Earth Planet Inter 120:327–338

    Article  CAS  Google Scholar 

  • Shim SH, Duffy S, Shen G (2000b) The stability and P-V-T equation of state of CaSiO3 perovskite in the earths lower mantle. J Geophys Res 105:25955–25968

    Article  CAS  Google Scholar 

  • Shim SH, Jeanloz R, Duffy TS (2002) Tetragonal structure of CaSiO3 perovskite above 20 GPa. Geophys Res Lett 29:242166

    Article  Google Scholar 

  • Stixrude L, Cohen RE, Yu R, Krakauer H (1996) Prediction of phase transition in CaSiO3 perovskite and implications for lower mantle structure. Am Mineral 81:1293–1296

    CAS  Google Scholar 

  • Tamai H, Yagi T (1989) High-pressure and high-temperature phase relations in CaSi03 and CaMgSi206 and elasticity of perovskite-type CaSi03. Phys Earth Planet Inter 54:370–377

    Article  CAS  Google Scholar 

  • Vinnik L, Kato M, Kawakatsu H (2001) Search for seismic discontinuities in the lower mantle. Geophys J Int 147:41–56

    Article  Google Scholar 

  • Wang Y, Weidner DJ, Guyot F (1996) Thermal equation of state of CaSiO3 peroskite. J Geophys Res 101:661–672

    Article  CAS  Google Scholar 

  • Warren MC, Ackland GJ, Karki BB, Clark SJ (1998) Phase transitions in silicate perovskites from first principles. Mineral Mag 62:585–598

    Article  CAS  Google Scholar 

  • Wentzcovitch R, Ross NL, Price GD (1995) Ab initio study of MgSiO3 and CaSiO3 perovskites at lower-mantle pressures. Phys Earth Planet Inter 90:101–112

    Article  CAS  Google Scholar 

  • Wolf GH, Jeanloz R (1985) Lattice dynamics and structural distortions of CaSiO3 and MgSiO3 perovskite. Geophys Res Lett 12:413–416

    CAS  Google Scholar 

  • Wolf GH, Bukowinski MST (1987) Theoretical study of the structural properties and equations of state of MgSiO3 and CaSiO3 perovskite: Implications for lower mantle composition. In: Manghnani MH, Syono Y (eds) High-pressure research in mineral physics. Terra Scientific, Tokyo, pp 313–331

    Google Scholar 

  • Yamanaka T, Kittaka K, Nagai T (2002) B1-B2 transition in CaO and possibility of CaSiO3-perovskite decomposition under high pressure. J Mineral Petrol Sci 97:144–152

    CAS  Google Scholar 

  • Zupan A, Blaha P, Schwarz K, Perdew JP (1998) Pressure-induced phase transitions in solid Si, SiO2, and Fe: performance of local-spin-density and generalized-gradient-approximation density functionals. Phys Rev B Condens Matter 58:11266–11272

    CAS  Google Scholar 

Download references

Acknowledgments

We thank W. Steurer, P. Schobinger-Papamantellos, S. Scandolo and G.D. Price for helpful discussions. Shigeaki Ono is thanked for sending us the preprint of his paper. G.D. Price is thanked for giving us the preprint of the paper “Equation of state and stability of CaSiO3 under pressure” by Caracas et al. (2005). We gratefully acknowledge access to supercomputers at CSCS - Centro Svizzero di Calcolo Scientifico and the HP Superdome of ETH Zürich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Y. Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, D.Y., Oganov, A.R. Ab initio study of the high-pressure behavior of CaSiO3 perovskite. Phys Chem Minerals 32, 146–153 (2005). https://doi.org/10.1007/s00269-005-0453-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-005-0453-z

Keywords

Navigation