Skip to main content
Log in

Advanced analyses of 57Fe Mössbauer data of alumino-silicate glasses

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

57Fe Mössbauer spectra of iron bearing alumino-silicate glasses are analysed by two complementary methods (SID and x-VBF) especially adapted for the analysis of disordered systems by taking into account distributions of hyperfine Mössbauer parameters. Qualitative and quantitative information about the oxidation state of iron are obtained as well as information about the distribution of local environments of iron. The possibility to separate the signal of ferric iron from that of ferrous iron allows to derive precise redox ratio in favourable cases but also to analyse more sharply the different contributions to Mössbauer spectra. Using two different glass series (feldspar composition, haplo-tonalitic composition), the characteristics of the two methods are described and employed to study the effect of composition, water incorporation and oxidation state on the glass structure. Optical absorption spectroscopy is used to support the interpretation of the Mössbauer spectra in case of the feldspar glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abu-Eid RM, Langer K, Seifert F (1978) Optical absorption and Mössbauer spectra of purple and green yoderite, a kyanite-related mineral. Phys Chem Minerals 3:271–289

    Article  Google Scholar 

  • Alberto HV, da Cunha JLP, Mysen BO, Gil JM, de Campos Ayres N (1996) Analysis of Mössbauer spectra of silicate glasses using a two dimensional Gaussian distribution of hyperfine parameters. J Non-Crystalline Solids 194:48–57

    Article  Google Scholar 

  • Amthauer G, Grodzicki M, Lottermoser W, Redhammer G (2004) Mössbauer spectroscopy: basic principles. In: Beran A, Libowitzky E (eds) Spectroscopic methods in mineralogy, vol 6 of EMU notes in mineralogy, Chap 8. Eötvös University Press, Budapest, pp 345–367

  • Antoni A, Montagne L, Daviero S, Palavit G, Bernard J-L, Wattiaux A, Vezin H (2004) Structural characterization of iron-alumino-silicate glasses. J Non-Crystalline Solids 345–346:66–69

    Article  Google Scholar 

  • Balan E, Allard T, Boizot B, Morin G, Muller J-P (1999) Structural Fe3+ in natural kaolinites: new insights from electron paramagnetic resonance spectra fitting at X and Q-band frequencies. Clays Clay Minerals 47(5):605–616

    Article  Google Scholar 

  • Berndt J, Liebske C, Holtz F, Freise M, Nowak M, Ziegenbein D, Hurkuck W, Koepke J (2002) A combined rapid-quench and H2-membrane setup for internally heated pressure vessels: Description and application for water solubility in basaltic melts. Am Mineral 87:1717–1726

    Google Scholar 

  • Berry AJ, O’Neill HS, Jayasuriya KD, Campbell SJ, Foran GJ (2003) XANES calibrations for the oxidation state of iron in a silicate glass. Am Mineral 88(7):967–977

    Google Scholar 

  • Bézos A, Humler E (2005) The Fe3+/∑ Fe ratios of MORB glasses and their implications for mantle melting. Geochim Cosmochim Acta 69(3):711–725

    Article  Google Scholar 

  • Boizot B, Ollier N, Olivier F, Petite G, Ghaleb D, Malchukova E (2005) Irradiation effects in simplified nuclear waste glasses. Nucl Instrum Methods Phys Res B 240:146–151

    Article  Google Scholar 

  • Bonnin-Mosbah M, Simionovici AS, Metrich N, Duraud JP, Massare D, Dillmann P (2001) Iron oxidation states in silicate glass fragments and glass inclusions with a XANES micro-probe. J Non-Crystalline Solids 288:103–113

    Article  Google Scholar 

  • Bonnin-Mosbah M, Metrich N, Susini J, Salomé M, Massare D, Menez B (2002) Micro X-ray absorption near edge structure at the sulfur and iron K-edges in natural silicate glasses. Spectrochim Acta B 57:711–725

    Google Scholar 

  • Botcharnikov RE, Koepke J, Holtz F, McCammon C, Wilke M (2005) The effect of water activity on the oxidation and structural state of Fe in a ferro-basaltic melt. Geochim Cosmochim Acta 69(21):5071–5085

    Article  Google Scholar 

  • Burns RG (1994) Mineral Mössbauer spectroscopy:correlations between chemical shift and quadrupole splitting parameters. Hyperfine Interact 91:739–745

    Article  Google Scholar 

  • Calas G, Petiau J (1983) Coordination state of iron in oxide glasses through high resolution K-edge spectra: information from pre-edge. Solid state Commun 48:625–629

    Article  Google Scholar 

  • Dickenson MP, Hess PC (1986) The structural role and homogeneous redox equilibria of iron in peraluminous, metaluminous and peralkaline silicate melts. Contrib Mineral Petrol 92:207–217

    Article  Google Scholar 

  • Dunlap RA (1997) An investigation of Fe oxidation states and site distributions in a tibetan tektite. Hyperfine Interact 110:217–225

    Article  Google Scholar 

  • Dyar MD, Perry CL, Rebbert CR, Dutrow BL, Holdaway MJ, Lang HM (1991) Mössbauer spectroscopy of synthetic and naturally occurring staurolite. Am Mineral 76(1–2):27–41

    Google Scholar 

  • Ehrt D, Leister M, Matthai A (2001) Polyvalent elements iron, tin and titanium in silicate, phosphate and fluoride glasses and melts. Phys Chem Glasses 42(3):231–239

    Google Scholar 

  • Evans RJ, Rancourt DG, Grodzicki M (2005) Hyperfine electric field gradients and local distortion environments of octahedrally coordinated Fe3+. Am Mineral 90:187–198

    Article  Google Scholar 

  • Farges F, Munoz M, Siewert R, Malavergne V, Brown GE, Behrens H, Nowak M, Petit P-E (2001) Transition elements in water-bearing silicate glasses/melts. Part II. Ni in water-bearing glasses. Geochim Cosmochim Acta 65(10):1679–1693

    Article  Google Scholar 

  • Farges F, Lefrère Y, Rossano S, Berthereau A, Calas G, Brown GE (2004) The effect of redox state on the local structural environment of iron in silicate glasses: a molecular dynamics, combined XAFS spectroscopy, bond valence study. J Non-Crystalline Solids 344(3):176–188

    Article  Google Scholar 

  • Galoisy L, Calas G, Arrio M-A (2001) High-resolution XANES spectra of iron in minerals and glasses: structural information from the pre-edge region. Chem Geol 174(1–3):307–319

    Article  Google Scholar 

  • Giuli G, Paris E, Pratesi G, Koeberl C, Cipriani C (2003) Iron oxidation state in the Fe-rich layer and silica matrix of Libyan Desert Glass: a high-resolution XANES study. Meteorit Planet Sci 38(8):1181–1186

    Google Scholar 

  • Giuli G, Eeckhout SG, Paris E, Koeberl C, Pratesi G (2005) Iron oxidation state in impact glass from the K/T boundary at Beloc, Haiti, by high-resolution XANES spectroscopy. Meteorit Planet Sci 40(11):1575–1580

    Article  Google Scholar 

  • Gunnlaugsson HP (2006) A simple model to extract hyperfine interaction distributions from Mössbauer spectra. Hyperfine Interact 167:851–854

    Article  Google Scholar 

  • Hannoyer B, Lenglet M, Dürr J, Cortes R (1992) Spectroscopic evidence of octahedral iron (III) in soda-lime silicate glasses. J Non-Crystalline Solids 151:209–216

    Article  Google Scholar 

  • Hess PC (1995) Thermodynamic mixing properties and the structure of silicate melts. In: Stebbins JF, Millan PFM, Dingwell DB (eds) Structure, dynamics and properties of silicate melts, vol 32 of Reviews in Mineralogy. Mineralogical Society of America, pp 145–189

  • Hofmeister A, Rossman GR (1984) Determination of Fe3+ and Fe2+ concentrations in feldspar by optical absorption and EPR spectroscopy. Phys Chem Minerals 11:213–224

    Article  Google Scholar 

  • Jackson WE, Farges F, Yeager M, Mabrouk PA, Rossano S, Waychunas GA, Solomon EI, Brown GE (2005) Multi-spectroscopic study of Fe(II) in silicate glasses: implications for the coordination environment of Fe(II) in silicate melts. Geochim Cosmochim Acta 69:4315–4332

    Article  Google Scholar 

  • Jayasuriya KD, O’Neill HS, Berry AJ, Campbell AJ (2004) A Mössbauer study of the oxidation state of Fe in silicate melts. Am Mineral 89:1597–1609

    Google Scholar 

  • Karabulut M, Marasinghe GK, Ray CS, Ray DE, Waddill GD, Booth CH, Allen PG, Bucher JJ, Caulder DL, Shuh DK (2002) An investigation of the local iron environment in iron phosphate glasses having different Fe(II) concentrations. J Non-Crystalline Solids 306:182–192

    Article  Google Scholar 

  • Lagarec K, Rancourt DG (1997) Extended Voigt-based analytic lineshape method for determining N-dimensional correlated hyperfine parameter distributions in Mössbauer spectroscopy. Nucl Instrum Methods Phys Res B 129:266–280

    Article  Google Scholar 

  • Lange RA, Carmichael ISE (1989) Ferric-ferrous equilibria in Na2O–FeO–Fe2O3–SiO2 melts: effects of analytical techniques on derived partial molar volumes. Geochim Cosmochim Acta 53:2195–2204

    Article  Google Scholar 

  • Lefrère Y (2002) Propriétés d’absorption optique du Fe2+ et du Fe3+ dans des verres d’intérêt industriel: mesure, modélisation et implications structurales. PhD Thesis, Université Denis Diderot

  • Leister M, Ehrt D (1999) Redox behavior of iron and vanadium ions in silicate melts at temperature up to 2000°c. Glass Sci Technol 72(5):153–160

    Google Scholar 

  • Levitz P, Bonnin D, Calas G, Legrand A-P (1980) A two-parameter distribution analysis of Mössbauer spectra in non-crystalline solids using general inversion method. J Phys E Sci Instrum 13:427–432

    Article  Google Scholar 

  • Liebske C, Behrens H, Holtz F, Lange RA (2003) The influence of pressure and composition on the viscosity of andesitic melts. Geochim Cosmochim Acta 67:473–485

    Article  Google Scholar 

  • Magnien V, Neuville DR, Cormier L, Roux J, Hazemann JL, Pinet O, Richet P (2006) Kinetics of iron redox reactions in silicate liquids: a high-temperature x-ray absorption and Raman spectroscopy study. J Nucl Mater 352(1–3):190–195

    Article  Google Scholar 

  • Mc Cammon CA (2004) Mössbauer spectroscopy: applications. In: Beran A, Libowitzky E (eds) Spectroscopic methods in mineralogy, Vol 6 of EMU notes in Mineralogy, Chap 9. Eötvös University Press, Budapest, pp 369–398

  • Metrich N, Susini J, Foy E, Farges F, Massare D, Sylla L, Lequien S, Bonnin-Mosbah M (2006) Redox state of iron in peralkaline rhyolitic glass/melt: X-ray absorption micro-spectroscopy experiments at high temperature. Chem Geol 231(4):350–363

    Google Scholar 

  • Mosbah M, Duraud JP, Metrich N, Wu Z, Delaney JS, San Miguel A (1999) Micro-XANES with synchrotron radiation: a complementary tool of micro-PIXE and micro-SXRF for the determination of oxidation state of elements. Application to geological materials. Nucl Instrum Methods Phys Res B 158(1–4):214–220

    Article  Google Scholar 

  • Mysen BO (2006) The structural behavior of ferric and ferrous iron in aluminosilicate glass near meta-aluminosilicate joins. Geochim Cosmochim Acta 70(9):2337–2353

    Article  Google Scholar 

  • Mysen BO, Richet P (2005) Silicate glasses and melts, vol 10 of developments in geochemistry. Elsevier, Amsredam

  • Nemtsova OM (2006) The method of extraction of subspectra with appreciably different values of hyperfine interaction parameters from Mössbauer spectra. Nucl Instrum Methods Phys Res B 244:501–507

    Article  Google Scholar 

  • Neuville DR, Cormier L, Massiot D (2006) Al coordination and speciation in calcium aluminosilicate glasses: effects of composition determined by Al-27 MQ-MAS NMR and Raman spectroscopy. Chem Geol 229(1–3):173–185

    Article  Google Scholar 

  • Nishida T (1995) Mössbauer effect in inorganic glasses. Hyperfine Interact 95:23–39

    Article  Google Scholar 

  • Nowak M, keppler H (1998) The influence of water on the environment of transition metals in silicate glasses. Am Mineral 83(1–2):43–50

    Google Scholar 

  • Ottonello G (1997) Principles of geochemistry. Columbia university press, Columbia

    Google Scholar 

  • Partzsch GM, Lattard D, McCammon C (2004) Mössbauer spectroscopic determination of Fe3+/Fe2+ in synthetic basaltic glass: a test of empirical \({\hbox{f}_{\hbox{O}_2}}\) equations under superliquidus and subliquidus conditions. Contrib Mineral Petrol 147:565–580

    Article  Google Scholar 

  • Quartieri S, Riccardi MP, Messiga B, Boscherini F (2005) The ancient glass production of the Medieval Val Gargassa glasshouse: Fe and Mn XANES study. J Non-Crystalline Solids 351(37–39):3013–3022

    Article  Google Scholar 

  • Rancourt DG, McDonald AM, Lalonde AE, Ping JY (1993) Mössbauer absorber thickness for accurate site populations in Fe-bearing minerals. Am Mineral 78:1–7

    Google Scholar 

  • Rancourt DG, Christie IAD, Royer M, Kodama H, Robert J-L, Lalonde AE, Murad E (1994a) Determination of accurate [4]Fe3+, [6]Fe3+ and [6]Fe2+ site populations in synthetic annite by mössbauer spectroscopy. Am Mineral 79:51–62

    Google Scholar 

  • Rancourt DG, Ping JY, Berman RG (1994b) Mössbauer spectroscopy of minerals. Phys Chem Minerals 21:258–267

    Article  Google Scholar 

  • Rancourt DG, Ping JY, Boukili B, Robert J-L (1996) Octahedral-site Fe2+ quadrupole splitting distributions from Mössbauer spectroscopy along the (OH, F)-annite join. Phys Chem Minerals 23:63–71

    Article  Google Scholar 

  • Rossano S, Balan E, Morin G, Bauer J-P, Calas G, Brouder C (1999) 57Fe Mössbauer spectroscopy of tektites. Phys Chem Minerals 26:530–538

    Article  Google Scholar 

  • Rossano S, Ramos A, Delaye J-M, Creux S, Filipponi A, Brouder C, Calas G (2000a) EXAFS and molecular dynamics combined study of CaO–FeO–2SiO2 glass. New insight into site significance in silicate glasses. Europhysics Letters 49(5):597–602

    Article  Google Scholar 

  • Rossano S, Ramos AY, Delaye J-M (2000b) Environment of ferrous iron in CaFeSi2O6 glass: contributions of EXAFS and molecular dynamics. J Non-Crystalline Solids 273(1–3):48–52

    Article  Google Scholar 

  • Stolper E (1982) Water in silicate glasses-an infrared spectroscopic study. Contrib Mineral Petrol 81(1):1–17

    Article  Google Scholar 

  • Uchino T, Nakaguchi K, Nagashima Y, Kondo T (2000) Prediction of optical properties of commercial soda-lime-silicate glasses containing iron. J Non-Crystalline Solids 261:72

    Article  Google Scholar 

  • Virgo D, Mysen B (1985) The structural state of iron in oxidized vs. reduced glasses at 1 atm: a 57Fe Mössbauer study. Phys Chem Minerals 12:65–76

    Article  Google Scholar 

  • Wilke M, Farges F, Petit P-E, Brown GE, Martin F (2001) Oxidation state and coordination of Fe in minerals: an Fe K-XANES spectroscopic study. Am Mineral 86(5–6):714–730

    Google Scholar 

  • Wilke M, Behrens H, Burkhard DJM, Rossano S (2002) The oxidation state of iron in silicic melt at 500 MPa water pressure. Chem Geol 189:55–67

    Article  Google Scholar 

  • Wilke M, Partzsch GM, Bernhardt R, Lattard D (2005) Determination of the iron oxidation state in basaltic glasses using XANES at the Fe K-edge. Chem Geol 220(1–2):141

    Article  Google Scholar 

  • Wilke M, Schmidt C, Farges F, Malavergne V, Gautron L, Simionovici A, Hahn M, Petit P-E (2006) Structural environment of iron in hydrous aluminosilicate glass and melt-evidence from X-ray absorption spectroscopy. Chem Geol 229:144–161

    Article  Google Scholar 

  • Wilke M, Farges F, Partzsch GM, Schmidt C, Behrens H (2007) Speciation of Fe in silicate glasses and melts by in-situ XANES spectroscopy. Am Mineral 92:44–56

    Article  Google Scholar 

  • Xue X, Kanzaki M (2006) Depolymerization effect of water in aluminosilicate glasses: direct evidence from 1H–27Al heteronuclear correlation NMR. Am Mineral 91:1922–1926

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank A. Bezos who kindly provided the natural MORB Mössbauer spectrum. Furthermore we would like to thank S. Hafner and D. Burkhard for assistance in collection of Mössbauer spectra at the university of Marburg. Special thanks to F. Farges who provides the authors with a review of this manuscript and to T. Berkover for his mathematical help. Authors thank B. Mysen and an anonymous reviewer for their constructive remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rossano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossano, S., Behrens, H. & Wilke, M. Advanced analyses of 57Fe Mössbauer data of alumino-silicate glasses. Phys Chem Minerals 35, 77–93 (2008). https://doi.org/10.1007/s00269-007-0200-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-007-0200-8

Keywords

Navigation