Skip to main content

Advertisement

Log in

Effect of the d electrons on phase transitions in transition-metal sesquioxides

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

We present a systematic density-functional study of phase relations in three 4d-transition-metal sesquioxides: Y2O3, Rh2O3, and In2O3. Y2O3 and In2O3 undergo pressure-induced transitions to phases with larger cation coordination number (from 6 to 7) at low pressures. However, this does not occur in Rh2O3 at least up to ~300 GPa. This cannot be explained by usual arguments based on ionic-radii ratios often used successfully to explain phase relations in simple-metal and rare-earth sesquioxides and sesquisulfides. Inspection of their electronic structures shows that, in Rh2O3, the electronic occupancy of 4d orbitals, 4d 6, plays a fundamental role in the extraordinary stability of the Rh2O3(II)-type phase with respect to coordination increase. We point out that d-orbital occupancy is a fundamental factor in explaining phase relations in transition-metal sesquioxides and sesquisulfides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atou T, Kusaba K, Fukuoka K, Kikuchi M, Syono Y (1990) Shock-induced phase transition of M 2O3 (M = Sc, Y, Sm, Gd, and In)-type compounds. J Solid State Chem 89:378–384

    Article  Google Scholar 

  • Badro J, Fiquet G, Struzhkin VV, Somayazulu Mao HK, Shen G, Le Bihan T (2002) Nature of the high-pressure transition in Fe2O3 hematite. Phys Rev Lett 89:205504

    Article  Google Scholar 

  • Biesterbos JWM, Hornstra J (1973) The crystal structure of the high-temperature, low-pressure form of Rh2O3. J Less-Common Metals 30:121–125

    Article  Google Scholar 

  • Caracas R, Cohen RE (2005) Prediction of a new phase transition in Al2O3 at high pressures. Geophys Res Lett 32:L06303

    Article  Google Scholar 

  • Caracas R, Cohen RE (2007) Post-perovskite phase in selected sesquioxides from density-functional calculations. Phys Rev B 76:184101

    Article  Google Scholar 

  • Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569

    Article  Google Scholar 

  • Chenavas J, Joubert JC, Marezio M (1971) Low-spin → high-spin state transition in high pressure cobalt sesquioxide. Solid State Commun 9:1057–1060

    Article  Google Scholar 

  • Coey JMD (1970) The crystal structure of Rh2O3. Acta Cryst B26:1876–1877

    Google Scholar 

  • Eyring L (1979) In: Gschneidner KA, Eyring L (eds) Handbook on the physics and chemistry of rare-earths, vol 3, p 337. North-Holland, Amsterdam

  • Flahaut J (1979) Sulfides, selenides, and tellurides. In: Gschneidner KA Jr, Eyring LR (eds) Handbook on the physics and chemistry of rare-earths. North-Holland, Amsterdam, vol 4, pp 1–88 and references therein

  • Giannozzi P et al (2009) Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

    Article  Google Scholar 

  • Halevy I, Carmon R, Winterrose ML, Yeheskel O, Tiferet E, Ghose S (2010) Pressure-induced structural phase transition in Y2O3 sesquioxides. J Phys Conference Series 215:012003

    Article  Google Scholar 

  • Hirose K, Kawamura K, Ohishi Y, Tateno S, Sata N (2005) Stability and equation of state of MgGeO3 post-perovskite phase. Am Mineral 90:262–265

    Article  Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  • Husson E, Proust C, Gillet P, Itié JP (1999) Phase Transitions in yttrium oxide at high pressure studied by Raman spectroscopy. Mater Res Bull 34:2085–2092

    Article  Google Scholar 

  • Hustoft J, Catalli K, Shim SH, Kubo A, Prakapenka VB, Kunz M (2008) Equation of state of NaMgF3 postperovskite: implication for the seismic velocity changes in the D′′ region. Geophys Res Lett 35:L10309

    Article  Google Scholar 

  • Ito E, Fukui H, Katsura T, Yamazaki D, Yoshino T, Aizawa Y, Kubo A, Yokoshi S, Kawabe K, Zhai S, Shatzkiy A, Okube M, Nozawa A, Funakoshi K (2009) Determination of high-pressure phase equilibria of Fe2O3 using the Kawai-type apparatus equipped with sintered diamond anvils. Am Mineral 94:205–209

    Article  Google Scholar 

  • Karazhanov SZh, Ravindran P, Vajeeston P, Ulyashin A, Finstad TG, Fjellvag H (2007) Phase stability, electronic structure, and optical properties of indium oxide polytypes. Phys Rev B 76:075129

    Article  Google Scholar 

  • Koffyberg FP (1992) Optical bandgaps and electron affinities of semiconducting Rh2O3(I) and Rh2O3(III). J Phys Chem Solids 53:1285–1288

    Article  Google Scholar 

  • Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  • Kokalj A (2003) Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput Mater Sci 28:155–168

    Article  Google Scholar 

  • Kubo A, Kiefer B, Shen G, Prakaoebja VB, Cava RJ, Duffy TS (2006) Stability and equation of state of the post-perovskite phase in MgGeO3 to 2 Mbar. Geophys Res Lett 33:L12S12–12S15

    Article  Google Scholar 

  • Kubo A, Kiefer B, Shim SH, Shen G, Prakapenka VB, Duffy T (2008) Rietvekd structure refinement of MgGeO3 post-perovskite phase to 1 Mbar. Am Mineral 93:965–976

    Article  Google Scholar 

  • Liu HZ, Chen J, Hu J, Martin CD, Weidner DJ, Häusermann D, Mao HK (2005) Octahedral tilting evolution and phase transition in orthorhombic NaMgF3 perovskite under pressure. Geophys Res Lett 32:L04304–L04307

    Article  Google Scholar 

  • Marezio M (1966) Refinement of the crystal structure of In2O3 at two wavelengths. Acta Cryst 20:723–728

    Article  Google Scholar 

  • Meetsma A, Wiegers GA, Haange RJ, de Boer JL, Boom G (1991) Structure of Two modifications of dysprosium sesquisulfide, Dy2S3. Acta Cryst C47:2287–2291

    Google Scholar 

  • Megaw H (1973) Crystal structures: a working approach. W. B. Saunders company, Philadelphia

    Google Scholar 

  • Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite transition in MgSiO3. Science 304:855–858

    Article  Google Scholar 

  • Nishio-Hamane D, Katagiri M, Niwa K, Sano-Furukawa A, Okada T, Yagi T (2009) A new high-pressure polymorph of Ti2O3: implication for high-pressure phase transition in sesquioxides. High Pressure Res 29:379–388

    Article  Google Scholar 

  • O’Connor BH, Valentine TM (1969) A neutron diffraction study of the crystal structure of the C-form of yttrium sesquioxide. Acta Cryst B25:2140–2144

    Google Scholar 

  • Oganov AR, Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D’’ layer. Nature 430:445–448

    Article  Google Scholar 

  • Oganov AR, Ono S (2005) The high-pressure phase of alumina and implications for Earth’s D’’ layer. Proc Natl Acad Sci USA 102:10828–10831

    Article  Google Scholar 

  • Perdew JP, Zunger A (1981) Self-interaction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079

    Article  Google Scholar 

  • Prewitt CT, Sleight AW (1968) Structure of gadolinium sesquisulfides. Inorg Chem 7:1090–1093

    Article  Google Scholar 

  • Rodi VF, Babel D (1965) Erdalkaliiridium(IV)-oxides: Kristallstruktur von CaIrO3. Z Anorg Allgem Chem 336:17–23

    Article  Google Scholar 

  • Ross NL, Navrotsky A (1988) Study of the MgGeO3 polymorphs (orthopyroxene, clinopyroxene, and ilmenite structures) by calorimetry, spectroscopy, and phase equilibria. Am Mineral 73:1355–1365

    Google Scholar 

  • Santillán J, Shim SH, Shen G, Prakapenka VB (2006) High-pressure phase transition in Mn2O3: application for the crystal structure and preferred orientation of the CaIrO3 type. Geophys Res Lett 33:L15307

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767

    Google Scholar 

  • Shannon RD, Prewitt CT (1970) Synthesis and structure of a new high-pressure form of Rh2O3. J Solid State Chem 2:134–136

    Article  Google Scholar 

  • Shim SH, Bengtson A, Morgan D, Sturhahn W, Catalli K, Zhao J, Lerche M, Prakapenka V (2009) Electronic and magnetic structures of the postperovskite-type Fe2O3 and implications for planetary magnetic records and deep interiors. Proc Natl Acad Sci USA 106:5508–5512

    Article  Google Scholar 

  • Städele M, Moukara M, Majewski JA, Vogl P, Görling A (1999) Exact exchange Kohn–Sham formalism applied to semiconductors. Phys Rev B 59:10031–10043

    Article  Google Scholar 

  • Tsuchiya T, Tsuchiya J, Umemoto K, Wentzcovitch RM (2004) Phase transition in MgSiO3 perovskite in the earth’s lower mantle. Earth Planet Sci Lett 224:241–248

    Article  Google Scholar 

  • Tsuchiya J, Tsuchiya T, Wentzcovitch RM (2005) Transition from the Rh2O3(II)-to-CaIrO3 structure and the high-pressure-temperature phase diagram of alumina. Phys Rev B 72:020103(R)

    Article  Google Scholar 

  • Umemoto K, Wentzcovitch RM (2009) d-electrons’ occupancy and crystal structure in transition metal sesquioxides, Eos Trans AGU 90(52), Fall Meet Suppl, Abstract MR13C-04

  • Umemoto K, Wentzcovitch RM, Weidner DJ, Parise JB (2006) NaMgF3: a low-pressure analog of MgSiO3. Geophys Res Lett 33:L15304

    Article  Google Scholar 

  • Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895(R)

    Article  Google Scholar 

  • Wang L, Pan Y, Ding Y, Yang Y, Yang W, Mao WL, Sinogeikin SV, Meng Y, Shen G, Mao HK (2009) High-pressure induced phase transition of Y2O3 and Y2O3:Eu3+. Appl Phys Lett 94:061921

    Article  Google Scholar 

  • Wentzcovitch RM (1991) Invariant molecular-dynamics approach to structural phase transitions. Phys Rev B 44:2358–2361

    Article  Google Scholar 

  • Wentzcovitch RM, Martins JL, Price GD (1993) Ab initio molecular dynamics with variable cell shape: application to MgSiO3. Phys Rev Lett 70:3947–3950

    Article  Google Scholar 

  • Wentzcovitch RM, Yu Y, Wu Z (2010) Thermodynamic properties and phase relations in mantle minerals investigated by first principles Quasiharmonic theory. Rev Mineral Geochem 71:59–98

    Article  Google Scholar 

  • White JG, Yocom PN, Lerner S (1967) Structure determination and crystal preparation of monoclinic rare earth sesquisulfides. Inorg Chem 6:1872–1875

    Article  Google Scholar 

  • Wyckoff RWG (1964) Crystal structures, vol 2. Wiley, New York

    Google Scholar 

  • Xu YN, Gu ZQ, Ching WY (1997) Electronic, structural and optical properties of crystalline yttria. Phys Rev B 56:14993–15000

    Article  Google Scholar 

  • Yusa H, Tsuchiya T, Tsuchiya J, Sata N, Ohishi Y (2008a) α-Gd2S3-type structure in In2O3: experiments and theoretical confirmation of a high-pressure polymorph in sesquioxide. Phys Rev B 78:092107

    Article  Google Scholar 

  • Yusa H, Tsuchiya T, Sata N, Ohishi Y (2008b) Rh2O3(II)-type structures in Ga2O3 and In2O3 under high pressure: experiment and theory. Phys Rev B 77:064107

    Article  Google Scholar 

  • Yusa H, Tsuchiya T, Sata N, Ohishi Y (2009) High-pressure phase transition to the Gd2S3 structure in Sc2O3: a new trend in dense structures in sesquioxides. Inorg Chem 48:7537–7543

    Article  Google Scholar 

  • Yusa H, Tsuchiya T, Sata N, Ohishi Y (2010) Dense Yttria phase eclipsing the A-type sesquioxide structure: high-pressure experiments and ab initio calculations. Inorg Chem 49:4478–4485

    Article  Google Scholar 

Download references

Acknowledgments

All calculations have been performed using the Quantum-ESPRESSO distribution (Giannozzi et al. 2009). Charge densities were visualized using XCrySDen software (Kokalj 2003). Research was supported by NSF grants NSF/EAR 0635990 and NSF/ATM 0428774 (VLab). Computations were performed at the Minnesota Supercomputing Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichiro Umemoto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

269_2010_412_MOESM1_ESM.doc

SFig. 1 Logarithmic derivatives of atomic radial wavefunctions at r = 1.06 Å. for yttrium, rhodium, and indium and at r = 0.79 Å. for oxygen. Thin solid and bold dashed lines are logarithmic derivations of all-electron and pseudo wave functions, respectively. They are indistinguishable (DOC 111 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umemoto, K., Wentzcovitch, R.M. Effect of the d electrons on phase transitions in transition-metal sesquioxides. Phys Chem Minerals 38, 387–395 (2011). https://doi.org/10.1007/s00269-010-0412-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-010-0412-1

Keywords

Navigation