Skip to main content

Advertisement

Log in

Observation of pressure-induced phase transition of δ-AlOOH by using single-crystal synchrotron X-ray diffraction method

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Pressure-induced phase transition of δ-AlOOH was confirmed between 6.1 and 8.2 GPa by using a single-crystal synchrotron X-ray diffraction method. The phase transition is reversible and unquenchable. Results from analysis of the distribution of X-ray diffraction intensities at 8.2 GPa reveal an additional systematic, absence of k + l odd for 0kl in comparison with h + l odd for h0l observed prior to the phase transition (space group, P21 nm). The space group of the post-transition phase should be Pnnm or Pnn2 to satisfy the systematic absence rule. Crystal structure refinements of the post-transition phase conducted for the three models (Pnnm, Pnn2, and P21 nm) indicate that the space group of the post-transition phase is Pnnm. The O–O distance of hydrogen bond in the post-transition phase at 8.2 GPa is 2.439(6) Å and is significantly longer than the predicted distance (2.366 Å) of the hydrogen bond symmetrization in δ-AlOOH. The H distribution in the post-transition phase would display a fully disordered hydrogen bond pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bärnighausen B, Bossert W, Anselmet B (1984) A second-order phase transition of calcium bromide and its geometrical interpretation. Acta Crystallogr A A40:C96

    Google Scholar 

  • Benoit M, Marx D (2005) The shape of protons in hydrogen bonds depend on the bond length. Chem Phys Chem 6:1738–1741

    Article  Google Scholar 

  • Chakoumakos BC, Horita J, Garlea VO (2013) H/D isotope effects in brucite at low temperature. Am Mineral 98:1–6

    Article  Google Scholar 

  • Farrugia LJ (1999) WinGX suite for small-molecule single-crystal crystallography. J Appl Crystallogr 32:837–838

    Article  Google Scholar 

  • Goncharov AF, Struzhkin VV, Somayazulu MS, Hemley RJ, Mao HK (1996) Compression of ice to 210 Gpa: infrared evidence for symmetric hydrogen-bonded phase. Science 273:218–220

    Article  Google Scholar 

  • Goncharov AF, Struzhkin VV, Somayazulu MS, Mao HK, Hemley RJ (1999) Raman spectroscopy of dense H2O and the transition to symmetric hydrogen bonds. Phys Rev Lett 83:1998–2001

    Article  Google Scholar 

  • Horita J, dos Santos AM, Tulk CA, Chakoumakos BC, Polyakov VB (2010) High-pressure neutron diffraction study on H–D isotope effects in brucite. Phys Chem Miner 37:741–749

    Article  Google Scholar 

  • International Tables for Crystallography. Volume C (2004) Mathematical, physical and chemical tables. In: Price E (ed), Kluwer Academic Publisher, pp 578–580

  • Komatsu K, Kuribayashi T, Sano A, Ohtani E, Kudoh Y (2006) Redetermination of the high-pressure modification of AlOOH from single-crystal synchrotron data. Acta Crystallogr Sect E 62:i216–i218. doi:10.1107/S160053680603916X

    Article  Google Scholar 

  • Komatsu K, Sano-Furukawa A, Kagi H (2011) Effects of Mg and Si ions on the symmetry of δ-AlOOH. Phys Chem Miner 38:727–733. doi:10.1007/s00269-011-0445-0

    Article  Google Scholar 

  • Kudoh Y, Takeda H (1986) Single crystal X-ray diffraction study on the bond compressibility of fayalite, Fe2SiO4 and rutile, TiO2 under high-pressure. Physica 139-140B:333–336

    Google Scholar 

  • Kudoh Y, Kuribayashi T, Suzuki A, Ohtani E, Kamada T (2004) Space group and hydrogen sites of δ-AlOOH and implication for hypothetical high-pressure form of Mg(OH)2. Phys Chem Miner 31:360–364. doi:10.1007/s00269-004-0404-0

    Article  Google Scholar 

  • Kuribayashi T, Kudoh Y, Kagi H (2003) Compressibility of phase A, Mg7Si2H6O14 up to 11.2 GPa. J Miner Petrol Sci 98:215–234

    Article  Google Scholar 

  • Kuribayashi T, Kagi H, Tanaka M, Akizuki M, Kudoh Y (2004) High-pressure single crystal X-ray diffraction and FT-IR observation of natural chondrodite and synthetic OH-chondrodite. J Mine Petrol Sci 99:118–129

    Article  Google Scholar 

  • Kuribayashi T, Tanaka M, Kudoh Y (2008) Synchrotron x-ray analysis of norbergite, Mg2.98Fe0.01Ti0.02Si0.99O4(OH0.31F1.69) structure at high pressure up to 8.2 GPa. Phys Chem Miner 35:559–568. doi:10.1007/s00269-008-0248-0

    Article  Google Scholar 

  • Li S, Ahuja R, Johansson B (2006) The elastic and optical properties of the high-pressure hydrous phase δ-AlOOH. Solid State Commun 137:101–106

    Article  Google Scholar 

  • Ohtani E, Litasov K, Suzuki A, Kondo T (2001) Stability field of new hydrous phase, δ-AlOOH, with implication for water transport into the deep mantle. Geophys Res Lett 28:3991–3993

    Article  Google Scholar 

  • Panero WR, Stixrude LP (2004) Hydrogen incorporation in stishovite at high pressure and symmetric hydrogen bonding in δ-AlOOH. Earth Planet Sci Lett 221:421–431

    Article  Google Scholar 

  • Pruzan Ph, Chervin JC, Canny B (1992) Determination of the D2O ice VII–VIII transition line by Raman scattering up to 51 GPa. J Chem Phys 97:718–721

    Article  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Article  Google Scholar 

  • Sano A, Ohtani E, Kubo T, Funakoshi K (2004) In situ X-ray observation of decomposition silicate AlSiO3OH and aluminum oxide hydroxide δ-AlOOH at high pressure and temperature. J Phys Chem Solids 65:1547–1554

    Article  Google Scholar 

  • Sano A, Ohtani E, Kondo T, Hirao N, Sakai T, Sata N, Ohishi Y, Kikegawa T (2008) Aluminous hydrous mineral δ-AlOOH as a carrier of hydrogen into the core-mantle boundary. Geophys Res Lett 35:L03303. doi:10.1029/2007/GL031718

    Article  Google Scholar 

  • Sano-Furukawa A, Komatsu K, Vanpeteghem CB, Ohtani E (2008) Neutron diffraction study of δ-AlOOH at high-pressure and its implication symmetrization of the hydrogen bond. Am Miner 93:1558–1567

    Article  Google Scholar 

  • Sano-Furukawa A, Kagi H, Nagai T, Nakano S, Fukura S, Ushijima D, IIzuka R, Ohtani E, Yagi T (2009) Change in compressibility of δ-AlOOH and δ-AlOOD at high-pressure: a study of isotope effect and hydrogen-bond symmetrization. Am Miner 94:1255–1261

    Article  Google Scholar 

  • Sasaki S (1989) Numerical tables of anomalous scattering factors calculated by the Cromer and Liberman’s method. KEK Rep 88:14

    Google Scholar 

  • Sasaki S (1990) X-ray absorption coefficients of the elements (Li to Bi, U). KEK Rep 90:16

    Google Scholar 

  • Scheldrick GM, Schnneider TR (1997) SHELXL: high-resolution refinement. Methods Enzymol 277:319–343

    Article  Google Scholar 

  • Schweizer KS, Stillinger FH (1980) High pressure phase transitions and hydrogen-bond symmetry in ice polymorphs. Phys Rev Lett 80:1230–1240

    Google Scholar 

  • Sugimura E, Iitaka T, Hirose K, Kawamura K, Sata N, Ohishi Y (2008) Compression of H2O ice to 126 GPa and implications for hydrogen-bond symmetrization: synchrotron X-ray diffraction measurements and density-functional calculations. Phys Rev B 77:214103. doi:10.1103/PhysRevB.77.214103

    Article  Google Scholar 

  • Suzuki A, Ohtani E, Kamada T (2000) A new hydrous phase δ-AlOOH synthesized at 21 GPa and 1,000 °C. Phys Chem Miner 27:689–693

    Article  Google Scholar 

  • Takemura K, Sahu PCh, Kunji Y, Toma Y (2001) Versatile gas-loading system for diamond anvil cells. Rev Sci Instrum 72:3873–3876

    Article  Google Scholar 

  • Tsuchiya J, Tsuchiya T (2009) Elastic properties of δ-AlOOH under high pressure: first principles investigation. Phys Earth Planet Inter 174:122–127

    Article  Google Scholar 

  • Tsuchiya J, Tsuchiya T, Tsuneyuki S, Yamanaka T (2002) First principle calculation of a high-pressure hydrous phase, δ-AlOOH. Geophys Res Lett 29:1909–1912. doi:10.1029/2002GL015417

    Article  Google Scholar 

  • Tsuchiya J, Tsuchiya T, Wentzcovitch RM (2008) Vibrational properties of δ-AlOOH under pressure. Am Miner 93:477–482

    Article  Google Scholar 

  • Vanpeteghem CB, Ohtani E, Kondo T (2002) Equation of state of the hydrous phase δ-AlOOH at room temperature up to 22.5 GPa. Geophys Res Lett 29:1119–1122. doi:10.1029/2001GL014224

    Article  Google Scholar 

  • Vanpeteghem CB, Sano A, Komatsu K, Ohtani E, Suzuki A (2007) Neutron diffraction study of alminous hydroxide δ-AlOOD. Phys Chem Miner 34:657–661

    Article  Google Scholar 

  • Wolanin E, Pruzan P, Chervin JC, Canny B, Gauthier M, Hausermann D, Hanfland M (1997) Equation of state of ice VII up to 106 GPa. Phys Rev B 56:5781–5785

    Article  Google Scholar 

  • Xue X, Kanzaki M, Fukui H, Ito E, Hashimoto T (2006) Cation order and hydrogen bonding of high-pressure phase in the Al2O3–SiO2–H2O system: an NMR and Raman study. Am Minerl 91:850–861

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Takemura, National Institute for Materials Sciences, for his help on He gas filling in DACs. Sample preparations (making thin section) for optical microscope and chemical analysis were carried out with the kind assistances of Mr. Ohyama and Mr. Ito to whom the authors express their gratitude. The authors thank Dr. Komatsu for his constructive comments and discussion about hydrogen bond. The authors thank anonymous referees for their helpful comments and suggestions. This study was supported by MEXT and JSPS KAKENHI Grant Numbers 20103002 and 25400507, and also partially supported by the Grant of KEK (PAC. 2010G015 and 2012G056) and that of GCOE program of Tohoku University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Kuribayashi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuribayashi, T., Sano-Furukawa, A. & Nagase, T. Observation of pressure-induced phase transition of δ-AlOOH by using single-crystal synchrotron X-ray diffraction method. Phys Chem Minerals 41, 303–312 (2014). https://doi.org/10.1007/s00269-013-0649-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-013-0649-6

Keywords

Navigation