Skip to main content

Advertisement

Log in

A dehydroxylation kinetics study of brucite Mg(OH)2 at elevated pressure and temperature

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

We performed an in situ dehydroxylation kinetics study of brucite under water-saturated conditions in the pressure and temperature ranges of 593–633 K and 668–1655 MPa using a hydrothermal diamond anvil cell. The kinetic analysis of the isothermal–isobaric data using an Avrami-type model involving nucleation and growth processes yields values for the dehydroxylation rate and reaction order compatible with a reaction mechanism limited by the monodimensional diffusion of water molecules from structural OH groups. Our results show a negative pressure dependence on the reaction rate k and a positive temperature dependence on the k. The dehydroxylation of brucite yields an activation volume ∆V value of 5.03 cm3/mol. Following the Arrhenius relationship, the apparent activation energy E a of the process is calculated to be 146 kJ/mol within the experimental PT ranges. It is determined that the fluid production rates varying from 4.4 × 10−7 to 10.7 × 10−7 \({\text{m}}_{\text{fluid}}^{3} \;{\text{m}}_{\text{rock}}^{ - 3} \;{\text{s}}^{ - 1}\) are a few orders of magnitude greater than the strain rate of the mantle serpentinites, which may be fast enough to result in the brittle fracture of rocks. Moreover, the rate of fluid production will be enhanced when brucite occurs in the non-/low H2O environments of the subduction zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahrens TJ (1989) Water storage in the mantle. Nature 342:122–123

    Article  Google Scholar 

  • Avrami M (1939) Kinetics of phase change. I general theory. J Chem Phys 7:103–1112

    Article  Google Scholar 

  • Avrami M (1940) Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224

    Article  Google Scholar 

  • Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 9:177–184

    Article  Google Scholar 

  • Ball MC, Taylor HFW (1961) The dehydration of brucite. Mineral Mag 32:754–766

    Article  Google Scholar 

  • Bassett WA, Shen AH, Bucknum M, Chou IM (1993) Anew diamond anvil cell for hydrothermal studies to 2.5 GPa and from-190 to 1200 °C. Rev Sci Instrum 64:2340–2345

    Article  Google Scholar 

  • Bhatti A, Dollimore D, Dyer A (1984) Decomposition kinetics of magnesium hydroxide using DTA. Thermochim Acta 78:55–62

    Article  Google Scholar 

  • Brar NS, Schloessin HH (1979) Effects of pressure, temperature, and grain size on the kinetics of the calcite-aragonite transformation. Can J Earth Sci 16:1402–1418

    Article  Google Scholar 

  • Cahn JW (1956) The kinetics of grain boundary nucleated reactions. Acta Metall 4:449–459

    Article  Google Scholar 

  • Chollet M, Daniel I, Koga KT, Petitgirard S, Morard G (2009) Dehydration kinetics of talc and 10 Å phase: consequences for subduction zone seismicity. Earth Planet Sci Lett 284:57–64

    Article  Google Scholar 

  • Chollet M, Daniel I, Koga KT, Morard G, van de Moortele B (2011) Kinetics and mechanism of antigorite dehydration: implications for subduction zones seismicity. J Geophys Res 116:B04203

    Article  Google Scholar 

  • Christian JW (1975) The theory of transformations in metals and alloys: equilibrium and general kinetic theory. Pergamon Press, Oxford

    Google Scholar 

  • Connolly JAD (1997) Devolatilization-generated fluid pressure and deformation-propagated fluid flow during prograde regional metamorphism. J Geophys Res 102:18149–18173

    Article  Google Scholar 

  • Dawson P, Hadfield CD, Wilkinson GR (1973) The polarized infrared and Raman spectra of Mg(OH)2, and Ca(OH)2. J Phys Chem Solids 34:1217–1225

    Article  Google Scholar 

  • Dobson DP, Meredith PG, Boon SA (2002) Simulation of subduction zone seismicity by dehydration of serpentine. Science 298:1407–1410

    Article  Google Scholar 

  • Dobson DP, Meredith PG, Boon SA (2004) Detection and analysis of microseismicity in multi anvil experiments. Phys Earth Planet Inter 143:337–346

    Article  Google Scholar 

  • Duffy TS, Meade C, Fei YW, Mao HK, Hemley RJ (1995) High-pressure phase transition in brucite. Am Mineral 80:222–230

    Article  Google Scholar 

  • Evans BW (2004) The serpentinite multisystem revisited: chrysotile is metastable. Int Geol Rev 46:479–506

    Article  Google Scholar 

  • Farmer VC (1974) The infrared spectra of mineral. Minera Soc Monogr 4:138–139

    Google Scholar 

  • Fukui H, Ohtaka O, Suzuki T, Funakoshi K (2003) Thermal expansion of Mg(OH)2 brucite under high pressure and pressure dependence of entropy. Phys Chem Miner 30:511–516

    Article  Google Scholar 

  • Gordon RS, Kingery WD (1966) Thermal decomposition of brucite: I, electron and optical microscope studies. J Am Ceram Soc 49:654–660

    Article  Google Scholar 

  • Gordon RS, Kingery WD (1967) Thermal decomposition of brucite: II, kinetics of decomposition in vaccum. J Am Ceram Soc 50:8–14

    Article  Google Scholar 

  • Halikia I, Syngouna PN, Kolitsa D (1998) Isothermal kinetic analysis of the thermal decomposition of magnesium hydroxide using thermogravimetric data. Thermochim Acta 320:75–88

    Article  Google Scholar 

  • Hilairet N, Reynard B (2009) Stability and dynamics of serpentinite layer in subduction zone. Tectonophysics 465:24–29

    Article  Google Scholar 

  • Hilairet N, Reynard B, Wang Y, Daniel I, Merkel S, Nishiyama N, Petitgirard S (2007) High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science 318:1910–1913

    Article  Google Scholar 

  • Irving AJ, Huang WL, Wyllie PJ (1977) Phase relations of portlandite, Ca(OH)2 and brucite, Mg(OH)2 to 33 kilobars. Am J Sci 277:313–321

    Article  Google Scholar 

  • Johnson MC, Walker D (1993) Brucite [Mg(OH)2] dehydration and the molar volume of H2O to 15 GPa. Am Mineral 78:271–284

    Google Scholar 

  • Jung H, Green HW II (2004) Experimental faulting of serpentinite during dehydration: implication for earthquakes, seismic low-velocity zones, and anomalous hypocenter distributions in subduction zones. Int Geol Rev 46:1089–1102

    Article  Google Scholar 

  • Kanzaki M (1991) Dehydration of brucite (Mg(OH)2) at high pressures detected by differential thermal analysis. Geophys Res Lett 18:2189–2192

    Article  Google Scholar 

  • Kennedy G (1956) The brucite-periclase equilibrium. Am J Sci 254:567–573

    Article  Google Scholar 

  • Kitahara S, Kennedy GC (1967) The calculated equilibrium curves for some reactions in the system MgO–SiO2–H2O at pressures up to 30 kilobars. Am J Sci 265:211–217

    Article  Google Scholar 

  • Kubo T, Kimura M, Kato T, Nishi M, Tominaga A, Kikegawa T, Funakoshi K (2010) Plagioclase breakdown as an indicator for shock conditions of meteorites. Nat Geosci 3:41–45

    Article  Google Scholar 

  • Liu CJ, Zheng HF (2012) In situ observation of gypsum-anhydrite transition at high pressure and high temperature. Chin Phys Lett 29:049101

    Article  Google Scholar 

  • Liu CJ, Zheng HF (2013) A new approach to kinetics study of the anhydrite crystallization at 373 K using a diamond anvil cell with Raman spectroscopy. Rev Sci Instrum 84:044501

    Article  Google Scholar 

  • Liu CJ, Zheng HF, Du JG, Wang DJ (2015a) The effect of pressure on the kinetics of γ-anhydrite crystallization investigated by diamond anvil cell. J Cryst Growth 410:39–46

    Article  Google Scholar 

  • Liu CJ, Zheng HF, Wang DJ (2015b) The dehydration kinetics of gypsum at high pressure and high temperature. High Pressure Res 35:273–281

    Article  Google Scholar 

  • Lvov BV, Ugolkov VL (2004) Kinetics and mechanism of free-surface decomposition of group II A and II B hydroxides analyzed thermogravimetrically by the third-law method. Thermochim Acta 413:7–15

    Article  Google Scholar 

  • Lvov BV, Novichikhin AV, Dyakov AO (1998) Mechanism of thermal decomposition of magnesium hydroxide. Thermochim Acta 315:135–143

    Article  Google Scholar 

  • Miller SA, Zee W, Olgaard DL, Connolly JAD (2003) A fluid-pressure feedback model of dehydration reactions: experiments, modelling, and application to subduction zones. Tectonophysics 370:241–251

    Article  Google Scholar 

  • Morales LFG, Mainprice D, Boudier F (2013) The influence of hydrous phases on the microstructure and seismic properties of a hydrated mantle rock. Tectonophysics 594:103–117

    Article  Google Scholar 

  • Murray P, White J (1955) Kinetics of clay dehydration. Clay Miner 2:255–264

    Article  Google Scholar 

  • Nahdi K, Rouquerol F, Ayadi MT (2009) Mg(OH)2 dehydroxylation: a kinetic study by controlled rate thermal analysis (CRTA). Solid State Sci 11:1028–1034

    Article  Google Scholar 

  • Omori S, Komabayshi T, Maruyama S (2004) Dehydration and earthquakes in the subducting slab: empirical link in intermediate and deep seismic zone. Phys Earth Planet Int 146:297–311

    Article  Google Scholar 

  • Peacock SM (1999) Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes. Geophys Res Lett 26:2517–2520

    Article  Google Scholar 

  • Peacock SM (2001) Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology 29:299–302

    Article  Google Scholar 

  • Perrillat JP, Daniel I, Koga KT, Reynard B, Cardon H, Crichton WA (2005) Kinetics of antigorite dehydration: a real-time X-ray diffraction study. Earth Planet Sci Lett 236:899–913

    Article  Google Scholar 

  • Pfeiffer H (2011) Thermal analysis of the Mg(OH)2 dehydroxylation process at high pressures. Thermochim Acta 525:180–182

    Article  Google Scholar 

  • Raleigh CB, Paterson MS (1965) Experimental deformation of serpentinite and its tectonic implications. J Geophys Res 70:3965–3985

    Article  Google Scholar 

  • Schmidt C, Ziemann MA (2000) In-situ Raman spectroscopy of quartz: a pressure sensor for hydrothermal diamond-anvil cell experiments at elevated temperatures. Am Mineral 85:1725–1734

    Article  Google Scholar 

  • Schramke JA, Kerrick DM, Blencoe JG (1982) Experimental determination of the brucite = periclase + H2O equilibrium with a new volumetric technique. Am Miner 67:269–276

    Google Scholar 

  • Schwartz S, Allemand P, Guillot S (2001) Numerical model of the effect of serpentinites on the exhumation of eclogitic rocks: insights from the Monvisoophiolitic massif (western Alps). Tectonophysics 342:193–206

    Article  Google Scholar 

  • Trittschack R, Grobety B, Brodard P (2014) Kinetics of the chrysotile and brucite dehydroxylation reaction: a combined non–isothermal/isothermal thermogravimetric analysis and high–temperature X–ray powder diffraction study. Phys Chem Miner 41:197–214

    Article  Google Scholar 

  • Vyazovkin S (2000) Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. Int Rev Phys Chem 19:45–60

    Article  Google Scholar 

  • Waclawska I (1984) Dehydration and dehydroxylation of smectites. I: dehydration and dehydroxylation kinetics. Miner Pol 15:91–107

    Google Scholar 

  • Wada I, Wang K (2009) Common depth of slab-mantle decoupling: reconciling diversity and uniformity of subduction zones. Geochem Geophys Geosyst 10:1–36

    Article  Google Scholar 

  • Wang DJ, Yi L, Huang BJ, Liu CJ (2015) High-temperature dehydration of talc: a kinetics study using in situ X-ray powder diffraction. Phase Transit 88:560–566

    Article  Google Scholar 

  • Weber JN, Roy R (1965) Complex stable = metastable solid reactions illustrated with Mg(OH)2 = MgO reaction. Am J Sci 263:668–677

    Article  Google Scholar 

  • Xia G (2013) Experimental studies on dehydration embrittlement of serpentinizedperidotite and the effect of pressure on creep of olivine. University of California, Riverside, pp 1–121

    Google Scholar 

  • Yamakasi T, Seno T (2003) Double seismic zone and dehydration embrittlement of the subducting slab. J Geophys Res 108(B4):2212

    Google Scholar 

  • Yamaoka S, Fukunaga O, Saito S (1970) Phase equilibrium in the system MgO–H2O at high temperatures and very high pressure. J Am Ceram Soc 53:179–181

    Article  Google Scholar 

  • Zhang YX (2010) Geochemical kinetics. Higher Education Press, Beijing, pp 37–52

    Google Scholar 

  • Zhang ZG, Duan ZH (2005) Prediction of the PVT properties of water over wide range of temperatures and pressures from molecular dynamics simulation. Phys Earth Planet Inter 149:335–354

    Article  Google Scholar 

Download references

Acknowledgements

We greatly thank Dr. Tsuchiya, Dr. Jacobsen and an anonymous reviewer for the constructive comments to improve the quality of the manuscript. This work was financially supported by the Natural Science Foundation of China (Grant Nos. 41603061, 41374095), the CAS/CAFEA international partnership program for creative research teams (No. KZZD-EW-TZ-19), and the China Postdoctoral Science Foundation (Grant No. 2015M571097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duojun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Wang, D., Zheng, H. et al. A dehydroxylation kinetics study of brucite Mg(OH)2 at elevated pressure and temperature. Phys Chem Minerals 44, 297–306 (2017). https://doi.org/10.1007/s00269-016-0857-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-016-0857-y

Keywords

Navigation