Skip to main content
Log in

A Mechanical Model of Porcine Vascular Tissues-Part I: Determination of Macromolecular Component Arrangement and Volume Fractions

  • Published:
Cardiovascular Engineering

Abstract

Blood vessels are designed to transport blood to and from the various tissues of the body. To accomplish this task, they must support enough stress to prevent mechanical failure under normal physiological conditions yet must be able to remain flexible and elastic enough to aid the heart in maintaining blood flow. The endothelium, smooth muscles, fibroblasts and the extracellular matrix must act in concert to produce and maintain a material that is capable of withstanding these stresses and alter the mechanics of vascular tissue if needed. Over time, these requirements have led to the widely accepted view that the form and function of biological materials are intimately connected.

The purpose of this study was to determine the morphological differences between various blood vessels and the impact of these differences, if any, on the mechanics of these tissues. The results of our work suggest that all vascular smooth muscle cells are embedded in a collagen matrix with a 1:1 volume fraction ratio. The primary differences between blood vessels of the juvenile porcine model appear to involve differences in the volume fraction and density of elastic tissue and medial thickness. In addition, cross-linking probably plays a significant role in altering mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archer SL. Diversity of phenotype and function of vascular smooth muscle cells. J Lab Clin Med 127: 524–529, 1996.

    PubMed  CAS  Google Scholar 

  • Aszodi A, Pfeifer A, Ahmad M, Glauner M, Zhou XH, Ny L, Andersson KE, Kehrel B, Offermanns S, and Fassler R. The vasodilator-stimulated phosphoprotein (VASP) is involved in cGMP- and cAMP-mediated inhibition of agonist-induced platelet aggregation, but is dispensable for smooth muscle function. EMBO J 18: 37–48, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Baicu CF, Stroud Jb, Livesay VA, Hapke E, Holder J, Spinale FG, and Zile MR. Changes in extracellular collagen matrix alter myocardial systolic performance. Am J Physiol Heart Cire Physiol 284: Hl22–Hl32, 2003.

    Google Scholar 

  • Braczko M, Tederko A, and Grzybowski J. The degree of collagen crosslinks in medical collagen membranes determined by measuring their water absorption. Polim Med 24: 41–52, 1994.

    PubMed  CAS  Google Scholar 

  • Brayden JE, Halpern W, and Brann LR. Biochemical and mechanical properties of resistance arteries from normotensive and hypertensive rats. Hypertension. 5: 17–25, 1983.

    PubMed  CAS  Google Scholar 

  • Canham PB, Talman EA, Finlay HM, and Dixon JG. Medial collagen organization in human arteries of the heart and brain by polarized light microscopy. Connect Tissue Res 26: 121–134, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Canham PB, Finlay HM and Boughner DR. Contrasting structure of the saphenous vein and internal mammary artery used as coronary bypass vessels. Cardiovasc Res 34: 557–567, 1997.

    PubMed  CAS  Google Scholar 

  • Clark JM, and Glagov S. Transmural organization of the arterial media. The lamellar unit revisited. Arteriosclerosis 5: 19–34, 1985.

    PubMed  CAS  Google Scholar 

  • Cox RH. Passive mechanics and connective tissue composition of canine arteries. Am J Physiol 234: H533–H541, 1978.

    PubMed  CAS  Google Scholar 

  • Cox RH. Basis for the altered arterial wall mechanics in the spontaneously hypertensive rat. Hypertension 3: 485–495, 1981.

    PubMed  CAS  Google Scholar 

  • Cremona O, Savoia P, Marchisio PC, Gabbiani G, and Chaponnier C. The alpha 6 and beta 4 integrin subunits are expressed by smooth muscle cells of human small vessels: A new localization in mesenchymal cells. J Histochem Cytochern 42: 1221–1228, 1994.

    CAS  Google Scholar 

  • Dickhout JG, and Lee RM. Increased medial smooth muscle cell length is responsible for vascular hypertrophy in young hypertensive rats. Am J Physiol Heart Cire Physiol 279: H2085–H2094, 2000.

    CAS  Google Scholar 

  • Dingemans KP, Teeling P, Lagendijk JH, and Becker AE. Extracellular matrix of the human aortic media: An ultrastructural histochemical and immunohistochemical study of the adult aortic media. Anat Rec 258: 1–14, 2000.

    PubMed  CAS  Google Scholar 

  • Farfan HF. Form and function of the musculoskeletal system as revealed by mathematical analysis of the lumbar spine. An essay. Spine 20: 1462–1474, 1995.

    PubMed  CAS  Google Scholar 

  • Ferri N, Garton KJ, and Raines EW. An NF-kappaB-dependent transcriptional program is required for collagen remodeling by human smooth muscle cells. J Biol Chem 278: 19757–19764, 2003.

    PubMed  CAS  Google Scholar 

  • Finlay HM, McCullough L, and Canham PH. Three-dimensional collagen organization of human brain arteries at different transmural pressures. J Vasco Res 32: 301–312, 1995.

    CAS  Google Scholar 

  • Franco CD, Hou G, and Bendeck MP. Collagens, integrins, and the discoidin domain receptors in arterial occlusive disease. Trends Cardiovasc Med 12: 143–148, 2002.

    PubMed  CAS  Google Scholar 

  • Fridez P, Rachev A, Meister JJ, Hayashi K, and Stergiopulos N. Model of geometrical and smooth muscle tone adaptation of carotid artery subject to step change in pressure. Am J Physiol Heart Circ Physiol 280: H2752–H2760, 2001.

    PubMed  CAS  Google Scholar 

  • Gerthoffer WT, and Gunst SJ. Invited review: Focal adhesion and small heat shock proteins in the regulation of actin remodeling and contractility in smooth muscle. J Appl Physiol 91: 963–972, 2001.

    PubMed  CAS  Google Scholar 

  • Gogiel T, and Jaworski S. Proteoglycans of human umbilical cord arteries. Acta Biochim Pol 47: 1081–1091, 2000.

    PubMed  CAS  Google Scholar 

  • Hadley J, Malik N, and Meek K. Collagen as a model system to investigate the use of aspirin as an inhibitor of protein glycation and cross linking. Micron. 32: 307–315, 2001.

    PubMed  CAS  Google Scholar 

  • Haller H, Lindschau C, Maasch C, Olthoff H, Kurscheid D, and Luft FC. Integrininduced protein kinase Calpha and Cepsilon translocation to focal adhesions mediates vascular smooth muscle cell spreading. Circ Res 82: 157–165, 1998.

    PubMed  CAS  Google Scholar 

  • Halayko AJ, Rector E, and Stephens NL. Characterization of molecular determinants of smooth muscle cell heterogeneity. Can J Physiol Pharmacol/Rev Can Physiol Pharmacol 75: 917–929, 1997.

    CAS  Google Scholar 

  • Hayashi K. Biomechanical studies of the remodeling of knee joint tendons and ligaments. J Biomech 29: 707–716, 1996.

    PubMed  CAS  Google Scholar 

  • Hedin U, Thyberg J, Roy J, Dumitrescu A, and Tran PK. Role of tyrosine kinases in extracellular matrix-mediated modulation of arterial smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 17: 1977–1984, 1997.

    CAS  Google Scholar 

  • Herdson PD. Some newer concepts of the fine structure of nonnal and diseased blood vessels. Med Clin North Am 51: 139–150, 1967.

    PubMed  CAS  Google Scholar 

  • Humphrey JD, and Na S: Elastodynamics and arterial wall stress. Ann Biomed Eng 30: 509–523, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Ingber DE. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 91: 877–887, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Intengan HD, and Schiffrin EL. Structure and Mechanical Properties of Resistance Arteries in Hypertension. Hypertension 36: 312-318, 2000.

    PubMed  CAS  Google Scholar 

  • Kalath S, Tsipouras P, and Silver FH. Non-invasive assessment of aortic mechanical properties. Ann Biomed Eng 14: 513–524, 1986.

    PubMed  CAS  Google Scholar 

  • Keech MK. Electron microscope study of the normal rat aorta. J Biophys Biochem Cytol 7: 533–538, 1960.

    Article  PubMed  CAS  Google Scholar 

  • Kim WJ, Yun SJ, Lee TS, Kim CW, Lee HM, and Choi H. Collagen-to-smooth muscle ratio helps prediction of prognosis after pyeloplasty. J Urol 163: 1271–1275, 2000.

    PubMed  CAS  Google Scholar 

  • Kopp J, Bonnet M, and Renou JP. Effect of collagen crosslinking on collagen-water interactions (a DSC investigation). Matrix 9: 443–450, 1989.

    PubMed  CAS  Google Scholar 

  • Lacolley P, Challande P, Boumaza S, Cohuet G, Laurent S, Boutouyrie P, Grimaud JA, Paulin D, Lamaziere JM, and Li Z. Mechanical properties and structure of carotid arteries in mice lacking desmin. Cardiovasc Res 51: 178–187, 2001.

    PubMed  CAS  Google Scholar 

  • Levicky V, and Dolezel S. Elastic tissue and smooth muscle volume in elastic and muscular type arteries in the dog. Physiol Bohemoslov 29: 351–360, 1980.

    PubMed  CAS  Google Scholar 

  • Li C, and XU Q. Mechanical-stress-initiated signal transductions in vascular smooth muscle cells. Cell Signal 12: 435–445, 2000.

    PubMed  CAS  Google Scholar 

  • Lillie MA, David GJ, and Gosline JM. Mechanical role of elastin-associated microfibrils in pig aortic elastic tissue. Connect Tissue Res 37: 121–141, 1998.

    PubMed  CAS  Google Scholar 

  • Liu SQ. Influence of tensile strain on smooth muscle cell orientation in rat blood vessels. J Biomech Eng 120: 313–320, 1998.

    PubMed  CAS  Google Scholar 

  • Mackey K, Meyer MC, Stirewalt WS, Starcher BC, and McLaughlin MK. Composition and mechanics of mesenteric resistance arteries from pregnant rats. Am J Physiol 263: R2–R8, 1992.

    PubMed  CAS  Google Scholar 

  • Midwood KS, and Schwarzbauer JE. Elastic fibers: building bridges between cells and their matrix. Curr Biol. 12: R279–R281, 2002.

    PubMed  CAS  Google Scholar 

  • Naruse K, and Sokabe M. Involvement of stretch-activated ion channels in Ca2+ mobilization to mechanical stretch in endothelial cells. Am. J Physiol Cell Physiol 264: C1037–C1044, 1993.

    CAS  Google Scholar 

  • Nikolopoulos SN, and Turner CE. Integrin-linked kinase (ILK) binding to paxillin LDI motif regulates ILK localization to focal adhesions. J Biol Chem 276: 23499–23505, 2001.

    PubMed  CAS  Google Scholar 

  • Ninomiya H, Inomata T, and Ogihara K. Collagen fiber arrangement in canine hepatic venules. J Vet Med Sci 61: 21–25, 1999.

    PubMed  CAS  Google Scholar 

  • Pietila K, and Nikkari T. Enhanced synthesis of collagen and total protein by smooth muscle cells from atherosclerotic rabbit aortas in culture. Atherosclerosis 37: 11–19, 1980.

    PubMed  CAS  Google Scholar 

  • Raspanti M, Congiu T, and Guizzardi S. Structural aspects of the extracellular matrix of the tendon: An atomic force and scanning electron microscopy study. Arch Histol Cytol 65: 37–43, 2002.

    PubMed  Google Scholar 

  • Reis FP, and Ferraz de Carvalho CA. The architecture of the splenic artery in the adult man. Anat Anz 160: 323–331, 1985.

    PubMed  CAS  Google Scholar 

  • Reis FP, and Ferraz de Carvalho CA. Functional architecture of the splenic vein in the adult human. Acta Anat (Basel) 132: 109–113, 1988.

    Google Scholar 

  • Rhodin JAG. Fine structure of vascular walls in mammals with special reference to smooth muscle component. Physiol Rev 24: 48–81, 1962.

    Google Scholar 

  • Rochdi A, Foucat L, and Renou JP. Effect of thermal denaturation on water-collagen interactions: NMR relaxation and differential scanning calorimetry analysis. Biopolymers 50: 690–696, 1999.

    PubMed  CAS  Google Scholar 

  • Rubio AR, and Morales-Segura MA. Nitric oxide, an iceberg in cardiovascular physiology: Far beyond vessel tone control. Arch Med Res 35: 1–11, 2004.

    PubMed  CAS  Google Scholar 

  • Scherberich A, Giannone G, Perennou E, Takeda K, Boucheix C, Rubinstein E, Lanza F, and Beretz A. FAK-mediated inhibition of vascular smooth muscle cell migration by the tetraspanin CD9. Thromb Haemost 87: 1043–1050, 2002.

    PubMed  CAS  Google Scholar 

  • Scott JE. Structure and function in extracellular matrices depend on interactions between anionic glycosaminoglycans. Pathol Biol (Paris) 49: 284–289, 2001.

    CAS  Google Scholar 

  • Shadwick RE. Mechanical design in arteries. J Exp Biol 23: 3305–3313, 1999.

    Google Scholar 

  • Silver FH, Siperko LM, and Seehra GP. Mechanobiology of force transduction in dermal tissue. Skin Res Technol 9: 3–23, 2003.

    PubMed  Google Scholar 

  • Silver FH, Snowhill PB, and Foran DJ. Mechanical behavior of vessel wall: A comparative study of aorta, vena cava, and carotid Artery. Ann Biomed Eng 31: 793–803, 2003.

    PubMed  Google Scholar 

  • Song HH, and Filmus J. The role of glypicans in mammalian development. Biochim Biophys Acta 1573: 241–246, 2002.

    PubMed  CAS  Google Scholar 

  • Stegemann JP, and Nerem RM. Altered response of vascular smooth muscle cells to exogenous biochemical stimulation in two- and three-dimensional culture. Exp Cell Res 283: 146–155, 2003.

    PubMed  CAS  Google Scholar 

  • Takahashi I, Onodera K, Sasano Y, Mizoguchi I, Bae JW, Mitani H, Kagayama M, and Mitani H. Effect of stretching on gene expression of betal integrin and focal adhesion kinase and on chondrogenesis through cell-extracellular matrix interactions. Eur J Cell Biol 82: 182–192, 2003.

    PubMed  CAS  Google Scholar 

  • Tanaka S, Koyama 11, Ichii T, Shioi A, Hosoi M, Raines EW, and Nishizawa Y. Fibrillar collagen regulation of plasminogen activator inhibitor-l is involved in altered smooth muscle cell migration. Arterioscler Thromb Vase Biol 22: 1573–1578, 2002.

    CAS  Google Scholar 

  • Todd ME, Laye CG, and Osborne DN. The dimensional characteristics of smooth muscle in rat blood vessels. A computer-assisted analysis. Circ Res 53: 319–331, 1983.

    PubMed  CAS  Google Scholar 

  • Ushiki T. Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Arch Histol Cytol 65: 109–126, 2002.

    PubMed  Google Scholar 

  • Weadock K, Olson RM, and Silver FH. Evaluation of collagen cross linking techniques. Biomater Med Devices Artif Organs 11: 293–318, 1983–1984.

    CAS  Google Scholar 

  • Wernig F, Mayr M, and Xu Q. Mechanical stretch-induced apoptosis in smooth muscle cells is mediated by beta1-integrin signaling pathways. Hypertension 41: 903–911, 2003.

    PubMed  CAS  Google Scholar 

  • Wight TN. Versican: A versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol 14: 617–623, 2002.

    PubMed  CAS  Google Scholar 

  • Yamboliev A, Ward SM, and Mutafova-Yambolieva VN. Canine mesenteric artery and vein convey no difference in the content of major contractile proteins. BMC Physiol 2: 17, 2002.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick H. Silver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snowhill, P.B., Foran, D.J. & Silver, F.H. A Mechanical Model of Porcine Vascular Tissues-Part I: Determination of Macromolecular Component Arrangement and Volume Fractions. Cardiovasc Eng 4, 281–294 (2004). https://doi.org/10.1007/s00270-005-8754-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-005-8754-7

Key words

Navigation