Skip to main content
Log in

Efficacy of Magnetic Thermoablation Using SPIO in the Treatment of Osteoid Osteoma in a Bovine Model Compared to Radiofrequency and Microwave Ablation

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate heating efficacy of superparamagnetic iron oxide nanoparticles (SPIO) for electromagnetic ablation (EMA) of osteoid osteoma (OO) using an ex vivo model compared to radiofrequency ablation (RFA) and microwave ablation (MWA).

Methods

A model for OO using sliced bovine tibia and sliced muscle tissue was developed. A bone cavity filled with either a mixture of SPIO and agarose or pure agarose (control group) was established. EMA was performed using an experimental system, RFA and MWA using clinically approved systems, and the ablation protocols recommended by the vendor. For temperature measurements, fiberoptic temperature probes were inserted inside the cavity, on the outside of the periosteum, and at a 5 mm distance to the periosteum.

Results

Maximum temperatures with or without SPIO in the nidus were as follows: EMA: 79.9 ± 2.5/22.3 ± 0.7 °C; RFA: 95.1 ± 1.8/98.6 ± 0.9 °C; MWA: 85.1 ± 10.8/83.4 ± 9.62 °C. In RFA with or without SPIO significantly higher temperatures were achieved in the nidus compared to all other groups (p < 0.05). In MWA significantly higher temperatures were observed in the 5 mm distance to the periosteum compared to EMA and RFA with or without SPIO (p < 0.05). In MWA temperature decrease between nidus and the 5 mm distance to the periosteum was significantly lower than in RFA with or without SPIO (p < 0.0001). In MWA without SPIO temperature decrease was significantly lower than in the EMA group (p < 0.05).

Conclusion

In the experimental setting, ablation of OO is safe and effective using EMA. It is less invasive than RFA and MWA, and it theoretically allows repeated treatments without repeated punctures. In comparison, the highest temperatures in the nidus are reached using RFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eggel Y, Theumann N, Luthi F (2007) Intra-articular osteoid osteoma of the knee: clinical and therapeutical particularities. Joint Bone Spine 74:379–381

    Article  PubMed  Google Scholar 

  2. Greenspan A (1993) Benign bone-forming lesions: osteoma, osteoid osteoma, and osteoblastoma. Clinical, imaging, pathologic, and differential considerations. Skeletal Radiol 22:485–500

    CAS  PubMed  Google Scholar 

  3. Cerase A, Priolo F (1998) Skeletal benign bone-forming lesions. Eur J Radiol 27(Suppl 1):S91–S97

    Article  PubMed  Google Scholar 

  4. Peyser A, Applbaum Y, Simanovsky N et al (2009) CT-guided radiofrequency ablation of pediatric osteoid osteoma utilizing a water-cooled tip. Ann Surg Oncol 16:2856–2861

    Article  PubMed  Google Scholar 

  5. Adam G, Keulers P, Vorwerk D et al (1995) The percutaneous CT-guided treatment of osteoid osteomas: a combined procedure with a biopsy drill and subsequent ethanol injection. Rofo 162:232–235

    Article  CAS  PubMed  Google Scholar 

  6. Fenichel I, Garniack A, Morag B et al (2006) Percutaneous CT-guided curettage of osteoid osteoma with histological confirmation: a retrospective study and review of the literature. Int Orthop 30:139–142

    Article  PubMed Central  PubMed  Google Scholar 

  7. Gebauer B, Tunn PU, Gaffke G et al (2006) Osteoid osteoma: experience with laser- and radiofrequency-induced ablation. Cardiovasc Intervent Radiol 29:210–215

    PubMed  Google Scholar 

  8. Rosenthal DI, Hornicek FJ, Torriani M et al (2003) Osteoid osteoma: percutaneous treatment with radiofrequency energy. Radiology 229:171–175

    Article  PubMed  Google Scholar 

  9. Skjeldal S, Lilleas F, Folleras G et al (2000) Real time MRI-guided excision and cryo-treatment of osteoid osteoma in os ischii—a case report. Acta Orthop Scand 71:637–638

    Article  CAS  PubMed  Google Scholar 

  10. Bruners P, Braunschweig T, Hodenius M et al (2010) Thermoablation of malignant kidney tumors using magnetic nanoparticles: an in vivo feasibility study in a rabbit model. Cardiovasc Intervent Radiol 33:127–134

    PubMed  Google Scholar 

  11. Hilger I, Hergt R, Kaiser WA (2000) Effects of magnetic thermoablation in muscle tissue using iron oxide particles: an in vitro study. Invest Radiol 35:170–179

    Article  CAS  PubMed  Google Scholar 

  12. Johannsen M, Thiesen B, Wust P, Jordan A (2010) Magnetic nanoparticle hyperthermia for prostate cancer. Int J Hyperthermia 26:790–795

    Article  PubMed  Google Scholar 

  13. Jordan A, Scholz R, Maier-Hauff K et al (2006) The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 78:7–14

    Article  CAS  PubMed  Google Scholar 

  14. Mitsumori M, Hiraoka M, Shibata T et al (1996) Targeted hyperthermia using dextran magnetite complex: a new treatment modality for liver tumors. Hepatogastroenterology 43:1431–1437

    CAS  PubMed  Google Scholar 

  15. Bitsch RG, Rupp R, Bernd L, Ludwig K (2006) Osteoid osteoma in an ex vivo animal model: temperature changes in surrounding soft tissue during CT-guided radiofrequency ablation. Radiology 238:107–112

    Article  PubMed  Google Scholar 

  16. Rosenthal DI, Alexander A, Rosenberg AE, Springfield D (1992) Ablation of osteoid osteomas with a percutaneously placed electrode: a new procedure. Radiology 183:29–33

    Article  CAS  PubMed  Google Scholar 

  17. Sans N, Galy-Fourcade D, Assoun J et al (1999) Osteoid osteoma: CT-guided percutaneous resection and follow-up in 38 patients. Radiology 212:687–692

    Article  CAS  PubMed  Google Scholar 

  18. Resnick RB, Jarolem KL, Sheskier SC et al (1995) Arthroscopic removal of an osteoid osteoma of the talus: a case report. Foot Ankle Int 16:212–215

    Article  CAS  PubMed  Google Scholar 

  19. Barei DP, Moreau G, Scarborough MT, Neel MD (2000) Percutaneous radiofrequency ablation of osteoid osteoma. Clin Orthop Relat Res 373:115–124

    Article  PubMed  Google Scholar 

  20. de Berg JC, Pattynama PM, Obermann WR et al (1995) Percutaneous computed-tomography-guided thermocoagulation for osteoid osteomas. Lancet 346(8971):350–351

    Article  PubMed  Google Scholar 

  21. Lindner NJ, Scarborough M, Ciccarelli JM, Enneking WF (1997) CT-controlled thermocoagulation of osteoid osteoma in comparison with traditional methods. Z Orthop Ihre Grenzgeb 135:522–527

    Article  CAS  PubMed  Google Scholar 

  22. Vanderschueren GM, Taminiau AH, Obermann WR, Bloem JL (2002) Osteoid osteoma: clinical results with thermocoagulation. Radiology 224:82–86

    Article  PubMed  Google Scholar 

  23. Woertler K, Vestring T, Boettner F et al (2001) Osteoid osteoma: CT-guided percutaneous radiofrequency ablation and follow-up in 47 patients. J Vasc Interv Radiol 12:717–722

    Article  CAS  PubMed  Google Scholar 

  24. Vanderschueren GM, Taminiau AH, Obermann WR et al (2004) Osteoid osteoma: factors for increased risk of unsuccessful thermal coagulation. Radiology 233:757–762

    Article  PubMed  Google Scholar 

  25. Hilger I, Andra W, Hergt R et al (2001) Electromagnetic heating of breast tumors in interventional radiology: in vitro and in vivo studies in human cadavers and mice. Radiology 218:570–575

    Article  CAS  PubMed  Google Scholar 

  26. Hilger I, Andra W, Bahring R et al (1997) Evaluation of temperature increase with different amounts of magnetite in liver tissue samples. Invest Radiol 32:705–712

    Article  CAS  PubMed  Google Scholar 

  27. Johannsen M, Gneveckow U, Thiesen B et al (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52:1653–1661

    Article  PubMed  Google Scholar 

  28. Organ LW (1976) Electrophysiologic principles of radiofrequency lesion making. Appl Neurophysiol 39:69–76

    PubMed  Google Scholar 

  29. de Mercato G, Garcia-Sanchez FJ (1988) Dielectric properties of fluid-saturated bone: a comparison between diaphysis and epiphysis. Med Biol Eng Comput 26:313–316

    Article  PubMed  Google Scholar 

  30. Haemmerich D, Ozkan R, Tungjitkusolmun S et al (2002) Changes in electrical resistivity of swine liver after occlusion and postmortem. Med Biol Eng Comput 40:29–33

    Article  CAS  PubMed  Google Scholar 

  31. Skinner MG, Iizuka MN, Kolios MC, Sherar MD (1998) A theoretical comparison of energy sources—microwave, ultrasound and laser—for interstitial thermal therapy. Phys Med Biol 43:3535–35347

    Article  CAS  PubMed  Google Scholar 

  32. Simo KA, Tsirline VB, Sindram D et al (2013) Microwave ablation using 915-MHz and 2.45-GHz systems: what are the differences? HPB (Oxford) 15:991–996

    Article  Google Scholar 

  33. Basile A, Failla G, Reforgiato A et al (2013) The use of microwaves ablation in the treatment of epiphyseal osteoid osteomas. Cardiovasc Intervent Radiol. doi:10.1007/s00270-013-0722-z

    PubMed  Google Scholar 

  34. Salloum M, Ma RH, Weeks D, Zhu L et al (2008) Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: experimental study in agarose gel. Int J Hyperthermia 24:337–345

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Isfort.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isfort, P., Witte, H., Slabu, I. et al. Efficacy of Magnetic Thermoablation Using SPIO in the Treatment of Osteoid Osteoma in a Bovine Model Compared to Radiofrequency and Microwave Ablation. Cardiovasc Intervent Radiol 37, 1053–1061 (2014). https://doi.org/10.1007/s00270-013-0832-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-013-0832-7

Keywords

Navigation