Skip to main content
Log in

“Edgeboost”: A Novel Technique to Extend the Ablation Zone Lateral to a Two-Probe Bipolar Radiofrequency Device

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Background

The dual-electrode bipolar-RFA (B-RFA) is increasingly used to ablate large liver tumours (3–7 cm). However, the challenging aspect of B-RFA is the placement of the two electrodes around the tumour. Realignment often requires the electrodes to be extracted and reinserted.

Aim

The aim of this study is to examine “Edgeboost”, a novel technique to increase the lateral ablation dimension without requiring any realignment of the electrodes.

Methods and Materials

An egg-white model and an ex vivo calf liver model were used compare the standard bipolar mode ablation to Edgeboost-1 (reaching full impedance in bipolar mode initially, then cycling in unipolar mode between left and right probes) and Edgeboost-2 (similar to Edgeboost-1 but not reaching full impedance initially in bipolar mode in order to minimize charring and, thus, to increase total ablation time).

Results

A significantly larger outer lateral ablation dimension to the probe was achieved with Edgeboost-1 compared to the standard method in the liver model (1.14 cm, SD: 0.16 vs. 0.44 cm, SD: 0.24, p = 0.04). Edgeboost-2 achieved the largest outer lateral ablation dimension of 1.75 cm (SD: 0.35). A similar association was seen in the egg model. Edgeboost-2 almost doubled the mass ablated with standard bipolar alone (mass ratio: 1:1.94 in egg white and 1:1.84 in liver).

Conclusion

This study demonstrates that the novel “Edgeboost” technique can increase the outer lateral ablation dimension without requiring the two inserted electrodes to be reinserted. This would be beneficial for interventionists who use the dual B-RFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lau WY, Lai EC. The current role of radiofrequency ablation in the management of hepatocellular carcinoma: a systematic review. Ann Surg. 2009;249:20–5.

    Article  PubMed  Google Scholar 

  2. Garrean S, Hering J, Saied A, Helton WS, Espat NJ. Radiofrequency ablation of primary and metastatic liver tumors: a critical review of the literature. Am J Surg. 2008;195:508–20.

    Article  PubMed  Google Scholar 

  3. Duffy JP, Hiatt JR, Busuttil RW. Surgical resection of hepatocellular carcinoma. Cancer J. 2008;14:100–10.

    Article  PubMed  Google Scholar 

  4. Goldberg SN. Radiofrequency tumor ablation: principles and techniques. Eur J Ultrasound. 2001;13:129.

    Article  PubMed  CAS  Google Scholar 

  5. Abitabile P, Hartl U, Lange J, Maurer CA. Radiofrequency ablation permits an effective treatment for colorectal liver metastasis. Eur J Surg Oncol. 2007;33(1):67–71.

    Article  PubMed  CAS  Google Scholar 

  6. Llovet JM, Bru C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis. 1999;19:329–38.

    Article  PubMed  CAS  Google Scholar 

  7. Wong SL, Mangu Pamela B, Choti Michael A, et al. American Society of Clinical Oncology 2009 clinical evidence review on radiofrequency ablation of hepatic metastases from colorectal cancer. J Clin Oncol. 2010;28(3):493–508.

    Article  PubMed  Google Scholar 

  8. Evrard S, Becouarn Y, Fonck M, Brunet R, Mathoulin-Pelissier S, Picot. V. Surgical treatment of liver metastases by radiofrequency ablation, resection, or in combination. Eur J Surg Oncol. 2004;30(4):399–406.

    Article  PubMed  CAS  Google Scholar 

  9. Harrison LE, Koneru B, Baramipour P, et al. Locoregional recurrences are frequent after radiofrequency ablation for hepatocellular carcinoma. J Am Coll Surg. 2003;197:759–64.

    Article  PubMed  Google Scholar 

  10. Abdalla EK, Vauthey JN, Ellis LM, et al. Recurrence and outcomes following hepatic resection, radiofrequency ablation, and combined resection/ablation for colorectal liver metastases. Ann Surg. 2004;239:818–25.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yi B, Somasundar P, Espat NJ. Novel laparoscopic bipolar radiofrequency energy technology for expedited hepatic tumour ablation. HPB. 2009;11:135–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Flanders VL, Gervais DA. Ablation of liver metastases: current status. J Vasc Interv Radiol. 2010;21(Suppl):S214–22.

    Article  PubMed  Google Scholar 

  13. Ritz JP, Lehmann KS, Isbert C, et al. In vivo simulation of a novel bipolar radiofrquency device for interstitial thermotherapy of liver tumors during normal and interrupted hepatic perfusion. Surg Res. 2006;133:176–84.

    Article  Google Scholar 

  14. Berjano FJ, Burdio F, Navarro AC, et al. Improved perfusion system for bipolar radiofrequency ablation of livers: preliminary findings from a computer modeling study. Physiol Meas. 2006;27:N55–66.

    Article  PubMed  Google Scholar 

  15. Burdio F, Navarro A, Sousa R, et al. Evolving technology in bipolar perfused radiofrequency ablation: assessment of efficacy, predictability, and safety in a pig liver model. Eur Radiol. 2006;16:1826–34.

    Article  PubMed  Google Scholar 

  16. Burdio F, Güemes A, Burdio JM, et al. Bipolar saline-enhanced electrode for radiofrequency ablation: results of experimental studies on in vivo porcine liver. Radiology. 2003;226:447–56.

    Article  Google Scholar 

  17. Eisele RM, Neuhaus P, Schumacher G. Radiofrequency ablation of liver tumors using a novel bipolar device. J Laparoendosc Adv Surg Tech. 2008;18:857–63.

    Article  Google Scholar 

  18. Pillai K, Akhter J, Chua TC, et al. Heat sink effect on tumor ablation characteristics as observed in monopolar radiofrequency, bipolar radiofrequency, and microwave, using ex vivo calf liver model. Medicine. 2015;94(9):1–10.

    Article  Google Scholar 

  19. Haemmerich D, Staelin ST, Tungjitkusolmun S, Lee FTJ, Mahvi DM, Webster JG. Hepatic bipolar radio-frequency ablation between separated multiprong electrodes. Trans Biomed Eng. 2001;48:1145–52.

    Article  CAS  Google Scholar 

  20. Jaskolka JD, Asch MR, Kachura JR, et al. Needle tract seeding after radiofrequency ablation of hepatic tumors. J Vasc Interv Radiol. 2005;16(4):485–91.

    Article  PubMed  Google Scholar 

  21. Nordlinger B, Benoist S. Treatment options for metastatic liver cancer. Surgical resection including perioperative chemotherapy (adjuvant and neoadjuvant). Eur J Cancer. 2003;1:181–8.

    Article  Google Scholar 

  22. Jin GY, Park SH, Han YM, et al. Radio frequency ablation in the rabbit lung using wet electrodes: comparison of monopolar and dual bipolar electrode mode. Korean J Radiol. 2006;7:97–105.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Alemi F, Kwon E, Stewart L, Corvera CU. A comparison of monopolar to bipolar radiofrequency ablation of liver tumors. HPB. 2011;13:2–3.

    Article  Google Scholar 

  24. McGahan JP, Brock JM, Tasluk H, et al. Hepatic ablation with use of radio-frequency electrocautery in the animal model. J Vasc Interv Radiol. 1992;3:291–6.

    Article  PubMed  CAS  Google Scholar 

  25. Organ LW. Electrophysiologic principles of radiofrequency lesion making. Appl Neurophysiol. 1976;39:69–76.

    PubMed  Google Scholar 

  26. Chen MH, Yang W, Yan K, et al. Large liver tumors: protocol for radiofrequency ablation and its clinical application in 110 patients—mathematic model, overlapping mode, and electrode placement process. Radiology. 2004;232(1):260–71.

    Article  PubMed  Google Scholar 

  27. Collyer WC, Landman J, Olweny EO, et al. Comparison of renal ablation with cryotherapy, dry radiofrequency, and saline augmented radiofrequency in a porcine model. J Am Coll Surg. 2001;193:505.

    Article  PubMed  CAS  Google Scholar 

  28. Meijerink MR, Van Den Tol P, Van Tilborg AAJM, Van Waesberghe JHTM, Meijer S, Van Kuijk C. Radiofrequency ablation of large size liver tumours using novel plan-parallel expandable bipolar electrodes: initial clinical experience. Eur J Radiol. 2011;77(1):167–71.

    Article  PubMed  Google Scholar 

  29. Van Tilborg AA, Nielsen K, Scheffer HJ, et al. Bipolar radiofrequency ablation for symptomatic giant (>10 cm) hepatic cavernous haemangiomas: initial clinical experience. Clin Radiol. 2013;68(1):e9–14.

    Article  PubMed  Google Scholar 

  30. Haemmerich D, Wright AW, Mahvi DM, Lee FTJ, Webster JG. Hepatic bipolar radiofrequency ablation creates coagulation zones close to blood vessels: a finite element study. Med Biol Eng Comput. 2003;41:317.

    Article  PubMed  CAS  Google Scholar 

  31. Al-Alem I, Pillai K, Akhter J, Chua TC, Morris DL. Heat sink phenomenon of bipolar and monopolar radiofrequency ablation observed using polypropylene tubes for vessel simulation. Surg Innov. 2014;21(3):269–76.

    Article  PubMed  Google Scholar 

  32. Lee JM, Han JK, Kim SH, et al. Saline-enhanced hepatic radiofrequency ablation using a perfused-cooled electrode: comparison of dual probe bipolar mode with monopolar and single probe bipolar modes. Korean J Radiol. 2004;5(2):121–7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Morris.

Ethics declarations

Conflict of interest

Dr. Huo, Dr. Pillai, and Dr. Akhter have nothing to disclose. Dr. Morris reports other from RFA Medical, outside the submitted work; In addition, Dr. Morris has a patent Yes licenced to RFA Medical.

Research Involving Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, Y.R., Pillai, K., Akhter, J. et al. “Edgeboost”: A Novel Technique to Extend the Ablation Zone Lateral to a Two-Probe Bipolar Radiofrequency Device. Cardiovasc Intervent Radiol 39, 97–105 (2016). https://doi.org/10.1007/s00270-015-1168-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-015-1168-2

Keywords

Navigation