Skip to main content

Advertisement

Log in

Biocompatibility of implants: lymphocyte/macrophage interactions

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The monocyte-derived macrophage is recognized as a critical determinant in biocompatibility, but its appearance in the chronic inflammatory phase is accompanied by the presence of lymphocytes, which have been much less studied in this regard. Here, we first present an overview of the physiologic continuum comprising host reactions to the surgical implantation of biomaterial. Secondly, we describe our collective research efforts, which indicate that lymphocytes are additional and key cellular determinants of biocompatible outcome. Thus, bioengineering advances will require that lymphocyte responses be regarded as integral components of innate inflammatory and immune/immunotoxic cell interactions at sites of biomaterial implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Anderson JM (2001) Biological responses to materials. Ann Rev Mater Res 31:81–110

    CAS  Google Scholar 

  2. Horbett T (2004) The role of adsorbed proteins in tissue response to biomaterials. In: Ratner B et al (eds) Biomaterials science: an introduction to biomaterials in medicine. Elsevier, San Diego, pp 237–246

    Google Scholar 

  3. McNally AK, Anderson JM (2002) Beta1 and beta2 integrins mediate adhesion during macrophage fusion and multinucleated foreign body giant cell formation. Am J Pathol 160:621–630

    PubMed  CAS  Google Scholar 

  4. McNally AK, MacEwan SR, Anderson JM (2007) Alpha subunit partners to beta-1 and beta-2 integrins during IL-4 induced foreign body giant cell formation. J Biomed Mater Res 82A:568–574

    CAS  Google Scholar 

  5. Ruoslahti E (1996) RGD and other integrin recognition sequences for integrins. Ann Rev Cell Dev Biol 12:697–715

    CAS  Google Scholar 

  6. Gonzales-Amaro R, Sanchez-Madrid F (1999) Cell adhesion molecules: selectins and integrins. Crit Rev Immunol 19:389–429

    Google Scholar 

  7. Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–1032

    PubMed  CAS  Google Scholar 

  8. Berton G, Lowell CA (1999) Integrin signaling in neutrophils and macrophages. Cell Signal 11:621–635

    PubMed  CAS  Google Scholar 

  9. Werr J, Eriksson AA, Hedqvist P, Lindbom L (2000) Engagement of beta2 integrins induces surface expression of beta1 integrin receptors in human neutrophils. J Leukoc Biol 68:553–560

    PubMed  CAS  Google Scholar 

  10. Anderson JM, Ziats NP, Bonfield TL, McNally AK, Topham NS (1991) In: Akutsu T, Koyanagi H (eds) Human blood protein and cell interactions with cardiovascular materials. Artificial Heart 3. Springer, New York, pp 45–55

    Google Scholar 

  11. McNally AK, Anderon JM (1994) Complement C3 participation in monocyte adhesion to different surfaces. Proc Natl Acad Sci USA 91:10119–10123

    PubMed  CAS  Google Scholar 

  12. Harbers G, Grainger DW (2006) Cell-materials interactions: fundamental design issues for tissue engineering and clinical considerations. In: Hollinger JO, Guelcher S (eds) An introduction to biomaterials. CRC, New York, pp 15–45

    Google Scholar 

  13. McNally AK, Jones JA, MacEwan SR, Colton E, Anderson JM (2008) Vitronectin is a critical adhesion protein for macrophage development and IL-4-induced foreign body giant cell formation in vitro. J Biomed Mater Res 86A:535–543

    CAS  Google Scholar 

  14. Greenberg S (1999) In: Gallin JI, Snyderman R (eds) Biology of phagocytosis. Inflammation: basic principles and clinical correlates. Lippincott, Williams, and Wilkins, Philadelphia, pp 681–701

    Google Scholar 

  15. Kaplan SS, Basford RE, Jeong MH, Simmons RL (1994) Mechanisms of biomaterial-induced superoxide release by neutrophils. J Biomed Mater Res 28:377–386

    PubMed  CAS  Google Scholar 

  16. Gemmell CH, Black JP, Yeo EL, Sefton MV (1996) Material-induced up-regulation of leukocyte CD11b during whole blood contact: material differences and a role for complement. J Biomed Mater Res 32:29–35

    PubMed  CAS  Google Scholar 

  17. Swartbol P, Truedsson L, Pärsson H, Norgren L (1996) Surface adhesion molecule expression on human blood cells induced by vascular graft materials in vitro. J Biomed Mater Res 32:669–676

    PubMed  CAS  Google Scholar 

  18. Chang CC, Lieberman SM, Moghe PV (1999) Leukocyte spreading behavior on vascular biomaterial surfaces: consequences of chemoattractant stimulation. Biomaterials 20(3):273–281

    PubMed  CAS  Google Scholar 

  19. Chang CC, Rosenson-Schloss RS, Bhoj TD, Moghe PV (2000) Leukocyte chemosensory migration on vascular prosthetic biomaterial is mediated by an integrin beta2 receptor chain. Biomaterials 21(22):2305–2313

    PubMed  CAS  Google Scholar 

  20. Rosenson-Schloss RS, Chang CC, Constantinides A, Moghe PV (2002) Alteration of leukocyte motility on plasma-conditioned prosthetic biomaterial, ePTFE, via a flow-responsive cell adhesion molecule, cd43. J Biomed Mater Res 60(1):8–19

    PubMed  CAS  Google Scholar 

  21. Tan J, Saltzman WM (2002) Topographical control of human neutrophil motility on micropatterned materials with various surface chemistry. Biomaterials 23:3215–3225

    PubMed  CAS  Google Scholar 

  22. Gorbet MB, Sefton MB (2004) Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 25:5681–5703

    PubMed  CAS  Google Scholar 

  23. Kirk JT, McNally AK, Anderson JM (2010) Polymorphonuclear leukocyte inhibition of monocytes/macrophages in the foreign body reaction. J Biomed Mater Res A 94:683–687

    PubMed  Google Scholar 

  24. Al-Saffar N, Iwaki H, Revell PA (1998) Direct activation of mast cells by prosthetic biomaterial particles. J Mater Sci Mater Med 9:849–853

    PubMed  CAS  Google Scholar 

  25. Tang L, Jennings TA, Eaton JW (1998) Mast cells mediate acute inflammatory responses to implanted biomaterials. Proc Natl Acad Sci USA 95:8841–8846

    PubMed  CAS  Google Scholar 

  26. Gordon S (1999) Development and distribution of mononuclear phagocytes: relevance to inflammation. In: Gallin JI, Snyderman R (eds) Inflammation. Basic principles and clinical correlates. Lippincott, Williams & Wilkins, Philadelphia, pp 35–48

    Google Scholar 

  27. Jones JA, Chang DT, Colton E, Kwon IK, Matsuda T, Anderson JM (2007) Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J Biomed Mater Res 83A:585–596

    CAS  Google Scholar 

  28. Jones JA, McNally AK, Chang DT, Colton E, Kwon IK, Matsuda T, Anderson JM (2007) Matrix metalloproteinases and their inhibitors in the foreign body reaction on biomaterials. J Biomed Mater Res 84A:158–166

    Google Scholar 

  29. Brodbeck WG, Nakayama Y, Matsuda T, Colton E, Ziats NP, Anderson JM (2002) Biomaterial surface chemistry dictates adherent monocyte/macrophage cytokine expression in vitro. Cytokine 18:311–319

    PubMed  CAS  Google Scholar 

  30. Brodbeck WG, Voskerician G, Ziats NP, Nakayama Y, Matsuda T, Anderson JM (2003) In vivo leukocyte cytokine mRNA responses to biomaterials is dependent on surface chemistry. J Biomed Mater Res 64A:320–329

    CAS  Google Scholar 

  31. Anderson JM, Schoen FJ (2004) Chapter 5.3. In vivo assessment of tissue compatibility. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. Elsevier, New York, pp 360–367

    Google Scholar 

  32. Chambers TJ, Spector WG (1982) Inflammatory giant cells. Immunobiol 161:283–289

    CAS  Google Scholar 

  33. Anderson JM (2000) Multinucleated giant cells. Curr Opin Hematol 7:40–47

    PubMed  CAS  Google Scholar 

  34. Zhao QH, Anderson JM, Hiltner A, Lodoen GA, Payet CR (1992) Theoretical analysis on cell size distribution and kinetics of foreign body giant cell formation in vivo on polyurethane elastomers. J Biomed Mater Res 26:1019–1038

    PubMed  CAS  Google Scholar 

  35. Anderson JM, Schoen FJ, Brown SA, Merritt K (2004) Chapter 9.5. Implant retrieval and evaluation. In: Ratner BD, As Hoffman, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. Elsevier, New York, pp 771–782

    Google Scholar 

  36. Zhao Q, Topham NS, Anderson JM, Hiltner A, Lodoen G, Payet CR (1991) Foreign body giant cells and polyurethane biostability: in vivo correlation of cell adhesion and surface cracking. J Biomed Mater Res 25:177–183

    PubMed  CAS  Google Scholar 

  37. Anderson JM (2004) Chapter 4.2. Inflammation, wound healing, and the foreign body response. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. Elsevier, New York, pp 296–304

    Google Scholar 

  38. Wiggins MJ, Wilkoff B, Anderson JM, Hiltner A (2001) Biodegradation of polyether polyurethane inner insulation in bipolar pacemaker leads. J Biomed Mater Res (Appl Biomater) 58:302–307

    CAS  Google Scholar 

  39. McNally AK, Anderson JM (1995) Interleukin-4 induces foreign body giant cells from human monocytes/macrophages. Differential lymphokine regulation of macrophage fusion leads to morphological variants of multinucleated giant cells. Am J Pathol 147:1487–1499

    PubMed  CAS  Google Scholar 

  40. DeFife KM, Jenney CR, McNally AK, Colton E, Anderson JM (1997) Interleukin-13 induces monocyte macrophage fusion and macrophage mannose receptor expression. J Immunol 158:3385–3390

    PubMed  CAS  Google Scholar 

  41. McNally AK, Anderson JM (2003) Foreign body-type multinucleated giant cell formation is potently induced by α-tocopherol and prevented by the diacylglycerol kinase inhibitor R59022. Am J Pathol 163:1147–1156

    PubMed  CAS  Google Scholar 

  42. McNally AK, Anderson JM (1996) The lymphokine interleukin-4 induces foreign body giant cell formation from human macrophages in a material surface property-dependent manner in vitro. Fifth World Biomaterials Congress, May 29-June 2, Toronto, Canada

  43. Jenney CR, DeFife KM, Colton E, Anderson JM (1998) Human monocyte/macrophage adhesion, macrophage motility, and IL-4 induced foreign body giant cell formation on silane modified surface in vitro. J Biomed Mater Res 41:171–184

    PubMed  CAS  Google Scholar 

  44. Jenney CR, Anderson JM (1999) Effects of surface-coupled polyethylene oxide on human macrophage adhesion and foreign body giant cell formation in vitro. J Biomed Mater Res 44:206–216

    PubMed  CAS  Google Scholar 

  45. Jenney CR, Anderson JM (1999) Alkylsilane-modified surfaces: inhibition of human macrophage adhesion and foreign body giant cell formation. J Biomed Mater Res 46:11–21

    PubMed  CAS  Google Scholar 

  46. Brodbeck WG, Patel J, Voskerician G, Christenson E, Shive MS, Nakayama Y, Matsuda T, Ziats NP, Anderson JM (2002) Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates in vivo. Proc Natl Acad Sci USA 99:10287–10292

    PubMed  CAS  Google Scholar 

  47. Collier TO, Anderson JM, Brodbeck WG, Barber T, Healy KE (2004) Inhibition of macrophage development and foreign body giant cell formation by hydrophilic interpenetrating polymer network. J Biomed Mater Res A 69:644–650

    PubMed  Google Scholar 

  48. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(23):25–35

    Google Scholar 

  49. Brigelius-Flohe R, Traber MG (1999) Vitamin E: function and metabolism. EMBO J 13:1145–1155

    CAS  Google Scholar 

  50. Azzi A, Stocker A (2000) Vitamin E: non-antioxidant roles. Prog Lipid Res 39:231–255

    PubMed  CAS  Google Scholar 

  51. Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin-4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176:287–292

    PubMed  CAS  Google Scholar 

  52. Goerdt S, Politz O, Schledzewski K, Birk R, Gratchev A, Guillot P, Hakiy N, Klemke CD, Dippel E, Kodelja V, Orfanos CE (1999) Alternative versus classical activation of macrophages. Pathobiology 67:222–226

    PubMed  CAS  Google Scholar 

  53. Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S (2005) Macrophage receptors and immune recognition. Ann Rev Immunol 23:901–944

    CAS  Google Scholar 

  54. Mantovani A, Sica A, Locati M (2007) New vistas on macrophage differentiation and activation. Eur J Immunol 37:14–16

    PubMed  CAS  Google Scholar 

  55. Kao WJ, McNally AK, Hiltner A, Anderson JM (1995) Role for interleukin-4 in foreign-body giant cell formation on a poly(etherurethane urea) in vivo. J Biomed Mater Res 29:1267–1275

    PubMed  CAS  Google Scholar 

  56. Gessner A, Mohrs K, Mohrs M (2005) Mast cells, basophils, and eosinophils acquire constituitive IL-4 and IL-13 transcripts during lineage differentiation that are sufficient for rapid cytokine production. J Immunol 174:1063–1072

    PubMed  CAS  Google Scholar 

  57. Drachman DE, Simon DI (2005) Inflammation as a mechanism and therapeutic target for in-stent restenosis. Curr Artheroscler Rep 7:44–49

    CAS  Google Scholar 

  58. Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E, Kutys R, Skorija K, Gold HK, Virmani R (2006) Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 48:203–205

    Google Scholar 

  59. Wisniewski N, Moussy F, Reichert WM (2000) Characterization of implantable biosensor membrane biofouling. Fresenius J Anal Chem 366:611–621

    PubMed  CAS  Google Scholar 

  60. Anderson JM (2008) Biocompatibility and bioresponse to biomaterials. In: Atala A, Lanza R, Thomson JA, Nerem RM (eds) Principles of regenerative medicine. Elsevier, New York, pp 704–723

    Google Scholar 

  61. Brodbeck WG, MacEwan M, Colton E, Meyerson H, Anderson JM (2005) Lymphocytes and the foreign body response: lymphocyte enhancement of macrophage adhesion and fusion. J Biomed Mater Res 74A:222–229

    CAS  Google Scholar 

  62. MacEwan MR, Brodbeck WG, Matsuda T, Anderson JM (2005) Monocyte/lymphocyte interactions and the foreign body response: in vitro effects of biomaterial surface chemistry. J Biomed Mater Res 74A:285–293

    CAS  Google Scholar 

  63. Chang DT, Jones JA, Meyerson H, Colton E, Kwon IK, Matsuda T, Anderson JM (2008) Lymphocyte/macrophage interactions: biomaterial surface-dependent cytokine, chemokine, and matrix protein production. J Biomed Mater Res 87A:676–687

    CAS  Google Scholar 

  64. Chang DT, Colton E, Anderson JM (2008) Paracrine and juxtacrine lymphocyte enhancement of adherent macrophage and foreign body giant cell activation. J Biomed Mater Res 89A:490–498

    Google Scholar 

  65. Chang DT, Colton E, Matsuda T, Anderson JM (2009) Lymphocyte adhesion and interactions with biomaterial adherent macrophages and foreign body giant cells. J Biomed Mater Res 91A:1210–1220

    CAS  Google Scholar 

  66. Rodriguez A, Voskerician G, Meyerson H, MacEwan S, Anderson JM (2008) T cell subset distributions following primary and secondary implantation at subcutaneous biomaterial implant sites. J Biomed Mater Res 85A:556–565

    CAS  Google Scholar 

  67. Rodriguez A, Meyerson H, Anderson JM (2008) Quantitative in vivo cytokine analysis at synthetic biomaterial implant sites. J Biomed Mater Res 89A:152–159

    Google Scholar 

  68. Ankersmit HJ, Tugulea S, Spanier T, Weinberg AD, Artrip JH, Burke EM, Flannery M, Mancini D, Rose EA, Edwards NM, Oz MC, Itescu S (1999) Activation induced T cell death and immune dysfunction after implantation of left-ventricular assist device. Lancet 354:550–555

    PubMed  CAS  Google Scholar 

  69. Itescu S, Ankersmit HJ, Kocher AA, Schuster MD (2000) Immunobiology of left ventricular assist devices. Prog Cardiovasc Dis 43:67–80

    PubMed  CAS  Google Scholar 

  70. Bender BS, Curtis JL, Nagel JE, Chrest FJ, Kraus ES, Briefel GR, Adler WH (1984) Analysis of immune status of hemodialyzed adults: association with prior transfusions. Kidney Int 26:436–443

    PubMed  CAS  Google Scholar 

  71. Grooteman MP, Nube MJ, van Limbeek J, Schoor M, van Houte AJ (1996) Lymphocyte subsets in dialyser eluates: a new parameter of bioincompatibility? Nephrol Dial Transplant 11:1073–1080

    PubMed  CAS  Google Scholar 

  72. Raij L, Kay NE (1987) Effect of hemodialysis membranes on human lymphocyte natural killer function. Contr Nephrol 59:17–25

    CAS  Google Scholar 

  73. DeFranco AL, Weiss A (1998) Lymphocyte activation and effector functions. Curr Opin Immunol 10:243–267

    CAS  Google Scholar 

  74. DiSanto JP (2006) Natural killer cell developmental pathways: a question of balance. Annu Rev Immunol 24:257–286

    CAS  Google Scholar 

  75. Schuster M, Kocher A, Lietz K, Ankersmit J, John R, Edwards N, Oz M, Itescu S (2001) Induction of CD40 ligand expression in human T cells by biomaterials derived from left ventricular assist device. Transplant Proc 33:1960–1961

    PubMed  CAS  Google Scholar 

  76. Clarkson MR, Sayegh MH (2005) T cell costimulatory pathways in allograft rejection and tolerance. Transplantation 80:555–563

    PubMed  Google Scholar 

  77. Guerder S, Meyerhoff J, Flavell RA (1994) The role of the T cell costimulator B7. In autoimmunity and the induction and maintenance of tolerance to peripheral antigen. Immunity 1:155–166

    PubMed  CAS  Google Scholar 

  78. Reed JC (2000) Mechanisms of apoptosis. Am J Pathol 157:1415–1430

    PubMed  CAS  Google Scholar 

  79. Ward SG, Westwick J (1998) Chemokines: understanding their role in T-lymphocyte biology. Biochem J 333:457–470

    PubMed  CAS  Google Scholar 

  80. Houssiau FA, Coulie PG, Van Snick J (1989) Distinct roles of IL-1 and IL-6 in human T cell activation. J Immunol 143:2520–2524

    PubMed  CAS  Google Scholar 

  81. Maghazachi AA, Al-Aoukaty A, Schall TJ (1996) CC chemokines induce the generation of killer cells from CD56+ cells. Eur J Immunol 26:315–319

    PubMed  CAS  Google Scholar 

  82. Monaco C, Andreakos E, Kiriakidis S, Feldmann M, Paleolog E (2004) T-cell-mediated signaling in immune, inflammatory and angiogenic processes: the cascade of events leading to inflammatory diseases. Curr Drug Targets Inflamm Allergy 3:35–42

    PubMed  CAS  Google Scholar 

  83. Burger D, Dayer JM (2002) Cytokines, acute-phase proteins, and hormones: IL-1 and TNF-alpha production in contact-mediated activation of monocytes by T lymphocytes. Ann NY Acad Sci 966:464–473

    PubMed  CAS  Google Scholar 

  84. Beech JT, Andreakos E, Ciesielski CJ, Green P, Foxwell BM, Brennan FM (2006) T-cell contact-dependent regulation of CC and CXC chemokine production in monocytes through differential involvement of NFkappaB: implications for rheumatoid arthritis. Arthritis Res Ther 8:R168

    PubMed  Google Scholar 

  85. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    PubMed  CAS  Google Scholar 

  86. Groux H, Bigler M, de Vries JE, Roncarolo MG (1996) Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells. J Exp Med 184:19–29

    PubMed  CAS  Google Scholar 

  87. Isomaki P, Clark JM, Panesar M, Cope AP (2005) Pathways of T cell activation and terminal differentiation in chronic inflammation. Curr Drug Targets Inflamm Allergy 4:287–293

    PubMed  Google Scholar 

  88. Gupta S, Ruifen BI, Gollapudi S (2006) Central memory and effector memory subsets of human CD4+ and CD8+ T cells display differential sensitivity to TNF-α-induced apoptosis. Ann NY Acad Sci 1050:108–114

    Google Scholar 

  89. Brodbeck WG, Shive MS, Colton E, Nakayama Y, Matsuda T, Anderson JM (2001) Influence of biomaterial surface chemistry on the apoptosis of adherent cells. J Biomed Mater Res 55:661–668

    PubMed  CAS  Google Scholar 

  90. Brodbeck WG, Shive MS, Colton E, Ziats NP, Anderson JM (2002) Interleukin-4 inhibits tumor necrosis factor-alpha-induced and spontaneous apoptosis of biomaterial-adherent macrophages. J Lab Clin Med 139:90–100

    PubMed  CAS  Google Scholar 

  91. Zingoni A, Sornasse T, Cocks BG, Tanaka Y, Santoni A, Lanier LL (2005) NK cell regulation of T cell-mediated responses. Mol Immunol 42:451–454

    PubMed  CAS  Google Scholar 

  92. O’Connor GM, Hart OM, Gardiner CM (2006) Putting the natural killer cell in its place. Immunology 117:1–10

    PubMed  Google Scholar 

  93. Lodoen MB, Lanier LL (2006) Natural killer cells as an initial defense against pathogens. Curr Opin Immunol 18:391–398

    PubMed  CAS  Google Scholar 

  94. Van Kaer L (2007) NKT cells: T lymphocytes with innate effector functions. Curr Opin Immunol 19:354–364

    PubMed  Google Scholar 

  95. Moretta A, Marcenaro E, Parolini S, Ferlazzo G, Moretta L (2008) NK cells at the interface between innate and adaptive immunity. Cell Death Differ 15:226–233

    PubMed  CAS  Google Scholar 

  96. Keegan AD (2001) IL-4. In: Oppenheim JJ, Feldman M (eds) Cytokine reference. Academic, San Diego

    Google Scholar 

  97. McKenzie ANJ, Matthews DJ (2001) IL-13. In: Oppenheim JJ, Feldman M (eds) Cytokine reference. Academic, San Diego

    Google Scholar 

  98. Kronenberg M (2005) Toward an understanding of NKT cell biology: progress and paradox. Ann Rev Immunol 26:877–900

    Google Scholar 

  99. Rodriguez A, MacEwan SR, Meyerson H, Kirk JT, Anderson JM (2009) The foreign body reaction in T-cell-deficient mice. J Biomed Mater Res 90A:106–113

    CAS  Google Scholar 

  100. De Lalla C, Galli G, Aldrighetti L, Romeo R, Mariani M, Monno A, Nuti S, Colombo M, Callea F, Porcelli SA, Panina-Bordignon P, Abrignani S, Casorati G, Dellabona P (2004) Production of pro-fibrotic cytokines by invariant NKT cells characterizes cirrhosis progression in chronic viral hepatitis. J Immunol 173:1417–1425

    PubMed  Google Scholar 

  101. Fuss IJ, Heller F, Boirivant M, Leon F, Yoshida M, Fichtner-Feigl S, Yang Z, Exley M, Kitani A, Blumberg RS, Mannon P, Strober W (2004) Non-classical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest 113:1490–1497

    PubMed  CAS  Google Scholar 

  102. Fichtner-Feigl S, Strober W, Kawakami K, Puri RK, Kitani A (2006) IL-13 signaling through the IL-13α2 receptor is involved in induction of TGF-β1 production and fibrosis. Nature Med 12:99–106

    PubMed  CAS  Google Scholar 

  103. Santana MA, Rosenstein Y (2003) What it takes to become an effector T cell: the process, the cells involved, and the mechanisms. J Cell Physiol 195:392–401

    PubMed  CAS  Google Scholar 

  104. Kyriakides TR, Foster MJ, Keeney GE, Tsai A, Giachelli CM, Clark-Lewis I, Rollins BJ, Bornstein P (2004) The CC chemokine ligand, CCL2/MCP1, participates in macrophage fusion and foreign body giant cell formation. Am J Pathol 165:2157–2166

    PubMed  CAS  Google Scholar 

  105. Pesce J, Kaviratne M, Ramalingam TR, Thompson RW, Urban JF, Cheever AW, Young DA, Collins M, Grusby MJ, Wynn TA (2006) The IL-21 receptor augments Th2 effector function and alternative macrophage activation. J Clin Invest 116:2044–2055

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the support of the National Institutes of Health, Institute of Biomedical Imaging and Bioengineering, Grant EB-00282.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Anderson.

Additional information

This article is published as part of the Special Issue on Implanted Devices: Biocompatibility, Tissue Engineering and Infection

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, J.M., McNally, A.K. Biocompatibility of implants: lymphocyte/macrophage interactions. Semin Immunopathol 33, 221–233 (2011). https://doi.org/10.1007/s00281-011-0244-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-011-0244-1

Keywords

Navigation