Skip to main content
Log in

Biocontrol and PGPR Features in Native Strains Isolated from Saline Soils of Argentina

  • Published:
Current Microbiology Aims and scope Submit manuscript

An Erratum to this article was published on 01 May 2014

Abstract

A bacterial collection of approximately one thousand native strains, isolated from saline soils of Cordoba province (Argentina), was established. From this collection, a screening to identify those strains showing plant growth promotion and biocontrol activities, as well as salt tolerance, was performed. Eight native strains tolerant to 1 M NaCl and displaying plant growth promotion and/or biocontrol features were selected for further characterization. Strains MEP2 18, MRP2 26, MEP2 11a, MEP3 1, and MEP3 3b significantly increased the growth of maize seedlings under normal and saline conditions, whereas isolates ARP2 3, AEP1 5, and ARP2 6 were able to increase the root dry weight of agropyre under saline conditions. On the other hand, strains MEP2 18 and ARP2 3 showed antagonistic activity against phytopathogenic fungi belonging to Sclerotinia and Fusarium genus. Antifungal activity was found in cell-free supernatants, and it was heat and protease resistant. Strains MEP218 and ARP23 were identified as Bacillus sp. and strains MEP211a and MEP33b as Ochrobactrum sp. according to the sequence analysis of 16S rRNA gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Literature Cited

  1. Altschul S, Stephen F, Madden T, Schäffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  2. Baldani V, Dobereiner I (1980) Host-plant specificity in the infection of cereals with Azospirillum spp. Soil Biol Biochem 12:443–439

    Article  Google Scholar 

  3. Barton LL, Johnson GV, Miller SO (1986) The effect of Azospirillum brasilense on iron absorption and translocation by sorghum. J Plant Nutr 9:557–565

    Article  Google Scholar 

  4. Bashan Y (1998) Inoculants of plant growth promoting bacteria for use in agriculture. Biotech Adv 16:729–770

    Article  CAS  Google Scholar 

  5. Benizri E, Courtade A, Picard C, Guckert A (1998) Role of maize root exudates in the production of auxins by Pseudomonas fluorescens M.3.1. Soil Biol Biochem 30:1481–1484

    Article  CAS  Google Scholar 

  6. Bohn H, McNeal B, O’Connor G (1993) Química del suelo. In: Grupo Noriega (eds) Soil chemistry. Mexico: E. Limusa, p 370

  7. Cantero JJ, Cantero A Cisneros JM (1996) Vegetation of the hydrohalomorphic landscape from the center of Argentina. Universidad National de Río Cuarto, p 23

  8. Capper AL, Higgins KP (1993) Application of Pseudomonas fluorescens isolates to wheat as potential biological control agents against take-all. Plant Pathol 42:560–567

    Article  Google Scholar 

  9. Cattelan A, Hartel P, Fuhrman J (1999) Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  10. Dobbeleare S, Vanderleyden J, Okon J (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  Google Scholar 

  11. Duffy BK, Ownley BH, Weller DM (1997) Soil chemical and physical properties associated with suppression of take-all of wheat by Trichoderma koningii. Phytopathology 87:1118–1124

    Article  CAS  PubMed  Google Scholar 

  12. Edwards SG (2004) Influence of agricultural practices on Fusarium infection of cereals and subsequent contamination of grain by trichothecene mycotoxins. Toxicol Lett 153:29–35

    Article  PubMed  CAS  Google Scholar 

  13. Fanuel L, Goffini C, Cheggour A, Devreese B, Driessche GV, Joris B, Beeumen JV, Frére JM (1999) The DmpA aminopeptidase from Ochrobactrum anthropi LMG7991 is the prototype of a new terminal nucleophile hydrolase family. Biochem J 341:147–155

    Article  PubMed  CAS  Google Scholar 

  14. Favoloro B, Tamburro A, Trofino M, Bologna L, Rotilio D, Heipieper HJ (2000) Modulation of the glutathione S-transferase in Ochrobactrum anthropi: function of xenobiotic substrates and other forms of stress. Biochem J 346:553–559

    Article  Google Scholar 

  15. Fischer SE, Fischer SI, Magris S, Mori G (2007) Isolation and characterization of bacteria from the rhizosphere of wheat. World J Microbiol Biotechnol (in press)

  16. Fischer SE, Marioli JM, Mori GB (2003) Effect of root exudates on EPS composition and LPS profile of Azospirillum brasilense Cd under saline stress. FEMS Microbiol Lett 219:53–62

    Article  PubMed  CAS  Google Scholar 

  17. Frioni L (1999) Biological cycle of phosphorous. In: Microbial process. Foundation of the Universidad Nacional de Río Cuarto, p 273

  18. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  19. Glick BR, Liu C, Ghosh S, Dumbroff EB (1997) The effect of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 on the development of canola seedlings subjected to various stresses. Soil Biol Biochem 29:1233–1239

    Article  CAS  Google Scholar 

  20. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. Plant Physiol Biochem 190:63–68

    CAS  Google Scholar 

  21. Hanking L, Anagnostakis SL (1977) Solid media containing carboxymethylcellulose to detect CX cellulose activity of microorganisms. J Gen Microbiol 98:109–115

    Google Scholar 

  22. Hoagland D, Arnon D (1938) Water-culture method for growing plant without soil. Calif Agric Exp Stn Circ, p 346

  23. Jarsún B, Gorgas JA, Zamora E, Bosnero E, Lovera E, Ravelo A, Tassile JL (2003) The soils. Geography and inventory of the resource. In: Gorga JA, Tassile JL (eds) Natural resources of the Córdoba province. The soils, Córdoba, Argentina: Córdoba Agency D.A.C. and T.S.E.M. environmental direction and National Insitute of Farming Technology, pp 97–183

  24. Jofré EC, Fischer SE, Rivarola V, Balegno H, Mori GB (1998) Saline stress affects the attachment of Azospirillum brasilense Cd to maize and wheat roots. Can J Microbiol 44:416–422

    Article  Google Scholar 

  25. Johnsson L, Hokeberg M, Gerhardson B (1998) Performance of the Pseudomonas chlororaphis biocontrol agent MA 342 against cereal seedborne diseases in field experiments. Eur J Plant Pathol 104:701–711

    Article  Google Scholar 

  26. Kafkafi U, Bernstein N (1996) Root growth under salinity stress. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. New York: Marcel Decker, pp 435–451

    Google Scholar 

  27. Kumar V, Narula N (1999) Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biol Fertil Soils 28:301–305

    Article  CAS  Google Scholar 

  28. Lebuhn M, Achouak W, Schloter M, Berge O, Meier H, Barakat M, Hartmann A, Heulin T (2000) Taxonomic characterization of Ochrobactrum sp. isolates from soil samples and wheat roots, and description of Ochrobactrum tritici sp. nov. and Ochrobactrum grignonense sp. nov. Int J Syst Evol Microbiol 50:2207–2223

    PubMed  CAS  Google Scholar 

  29. Lucy M, Reed E, Glick BN (2004) Applications of free living plant growth-promoting rhizobacteria. Ant van Leeuwenhoek 86:1–25

    Article  CAS  Google Scholar 

  30. Magalhães Cruz L, de Souza EM, Weber O, Baldani JI, Döbereiner J, Oliveira Pedrosa F (2001) 16S Ribosomal DNA Characterization of Nitrogen-Fixing Bacteria Isolated from Banana (Musa spp.) and Pineapple (Ananas comosus (L.) Merril). Appl and Environ Microbiol 67:2375–2379

    Article  Google Scholar 

  31. Mayak S, Tirosh T, Glick B (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  PubMed  CAS  Google Scholar 

  32. Ngom A, Nakagawa Y, Sawada H, Tsukahara J, Wakabayashi S, Uchiumi T, Nuntagij A, Kotepong S, Suzuki A, Higashi S, Abe M (2004) A novel symbiotic nitrogen-fixing member of the Ochrobactrum clade isolated from root nodules of Acacia mangium. J Gen Appl Microbiol 50:17–27

    Article  PubMed  CAS  Google Scholar 

  33. Parret AHA, Schoofs G, Proost P, De Mot R (2003) Plant lectin-like bacteriocin from a rhizosphere-colonizing Pseudomonas isolate. J Bacteriol 185:897–908

    Article  PubMed  CAS  Google Scholar 

  34. Perriére G, Gouy M (1996) WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369

    Article  PubMed  Google Scholar 

  35. Phillips AJL (1989) Fungi associated with sclerotia of Sclerotinia sclerotiorum in South Africa and effects on the pathogen. Phytophylactia 21:135–139

    Google Scholar 

  36. Razi SS, Sen SP (1996) Amelioration of water stress effects on wetland rice by urea-N, plant growth regulators, and foliar spray of a diazotrophic bacterium Klebsiella sp. Biol Fertil Soils 23:454–458

    CAS  Google Scholar 

  37. Ross IL, Alami Y, Harvey PR Achouak W, Ryder MH (2000) Genetic diversity and biological control activity of novel species of closely related Pseudomonads isolated from wheat field soils in South Australia. Appl Environ Microbiol 66:1609–1616

    Article  PubMed  CAS  Google Scholar 

  38. Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    Article  PubMed  CAS  Google Scholar 

  39. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  40. Schwyn B, Neilands J (1987) Universal chemical assay for the detection and determination of siderophore. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  41. Singh KN, Chatrath R (2001) Salinity tolerance. In: Reynolds MP, Ortiz-Monasterio JI, McNab A (eds) Application of physiology in wheat breeding. México, D.F.: International Maize and Wheat Improvement Center (CIMMYT), pp 101–110

    Google Scholar 

  42. Song B, Palleroni NJ, Häggblom MM (2000) Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments. Appl Environ Microbiol 66:3446–3453

    Article  PubMed  CAS  Google Scholar 

  43. Souto GI, Correa OS, Montecchia MS, Kerber NL, Pucheu NL, Bachur M, García AF (2004) Genetic and functional characterization of a Bacillus sp. strain excreting surfactin and antifungal metabolites partially identified as iturin-like compounds. J Appl Microbiol 97:1247–1256

    Article  PubMed  CAS  Google Scholar 

  44. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequences alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  45. Tripathi A, Verma SC, Chowdhury SP, Lebuhn M, Gattinger A, Schloter M (2006) Ochrobactrum oryzae sp. nov., an endophytic bacterial species isolated from deep-water rice in India. Int J Syst Evol Microbiol 56:1677–1680

    Article  PubMed  CAS  Google Scholar 

  46. Trujillo M, Willems A, Abril A, Planchuelo A, Rivas R, Ludeña D, Mateos P, Molina-Martínez E, Velásquez E (2005) Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. App Environ Microbiol 71:1318–1327

    Article  CAS  Google Scholar 

  47. Walsh GA, Murphy RA, Killen GF, Headon DR Power RF (1995) Technical note: detection and quantification of supplemental fungal β-glucanase activity in animal feed. J Animal Sci 73:1074–1076

    Google Scholar 

  48. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

S. Fischer and E. Jofré are members of the Scientific Researcher Career-CONICET (National Council of Technological Researchs). A. Príncipe and F. Alvarez are recipients of a doctoral fellowship from CONICET and M. Castro is a recipient of a fellowship from SeCYT. This research was supported by SECYT of Universidad Nacional de Río Cuarto, Picto-Agencia Nacional de Promoción Científica y Tecnológica y Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgardo Jofré.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00284-014-0601-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Príncipe, A., Alvarez, F., Castro, M.G. et al. Biocontrol and PGPR Features in Native Strains Isolated from Saline Soils of Argentina. Curr Microbiol 55, 314–322 (2007). https://doi.org/10.1007/s00284-006-0654-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-006-0654-9

Keywords

Navigation