Skip to main content
Log in

Javanicin, an Antibacterial Naphthaquinone from an Endophytic Fungus of Neem, Chloridium sp.

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The endophytic fungus Chloridium sp. produces javanicin under liquid and solid media culture conditions. This highly functionalized naphthaquinone exhibits strong antibacterial activity against Pseudomonas spp., representing pathogens to both humans and plants. The compound was crystallized and the structure was elucidated by X-ray crystallography. The X-ray structure confirms the previously elucidated structure of the compound that was done under standard spectroscopic methods. The importance of javanicin in establishing symbiosis between Chloridium sp. and its host plant, Azadirachta indica, is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    PubMed  CAS  Google Scholar 

  2. Arnstein HRV, Cook AH (1947) Production of antibiotics by fungi Part III Javanicin an antibacterial pigment from Fusarium javanicum. J Chem Soc 1021–1027

  3. Baker RA, Tatum JH, Nemec S Jr (1990) Antimicrobial activity of naphthoquinones from Fusaria. Mycopathologia 111:9–15

    Article  PubMed  CAS  Google Scholar 

  4. Bergeron D, Caron B, Brassard P (1993) An expeditious synthesis of Javanicin. J Org Chem 58:509–511

    Article  CAS  Google Scholar 

  5. Brodey CL, Rainey PB, Tester M, Johnstone K (1991) Bacterial blotch disease of the cultivated mushroom is caused by an ion channel forming lipodepsipeptide toxin. Mol Plant Microbe Interact 4:407–411

    CAS  Google Scholar 

  6. Cardellina JH (1991) HPLC separation of taxol and cephalomannin. J Chromatogr 14:659–665

    CAS  Google Scholar 

  7. Van Eldere J (2003) Multicentre surveillance of Pseudomonas aeruginosa susceptibility patterns in nosocomial infections. J Antimicrob Chemother 51:347–352

    Article  PubMed  Google Scholar 

  8. Elkin S, Geddes D (2003) Pseudomonal infection in cystic fibrosis: the battle continues. Expert Rev Anti Infect Ther 1(4):609–618

    Article  PubMed  Google Scholar 

  9. Ezra D, Hess WM, Strobel GA (2004) New endophytic isolates of Muscodor albus, a volatile-antibiotic-producing fungus. Microbiology 150:4023–4031

    Article  PubMed  CAS  Google Scholar 

  10. Gams W, Holubova-Jechova V (1976) Chloridium and some other dematiaceous hyphomycetes growing on decaying wood. Stud Mycol Baarn 13:1–99

    Google Scholar 

  11. Gatenbeck S, Bentley R (1965) Naphthaquinone biosynthesis I moulds: the mechanism for formation of javanicin. Biochem J 94:478–481

    PubMed  CAS  Google Scholar 

  12. Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity and implications of their occurrence. J Nat Prod 69:509–526

    Article  PubMed  CAS  Google Scholar 

  13. Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: a review. Appl Biochem Microbiol 44:136–142

    CAS  Google Scholar 

  14. Jiao P, Swenson DC, Gloer JB, Wicklow DT (2006) Chloriolide, a 12-membered macrolide from Chloridium virescens var. chlamydosporum (NRRL 37636). J Nat Prod 69:636–639

    Article  PubMed  CAS  Google Scholar 

  15. Kim YJ, Nishida H, Pang CH et al (2002) CJ-21, 164, a New D-glucose-6-phosphate phosphohydrolase inhibitor produced by a fungus Chloridium sp. J Antibiot 55:121–127

    PubMed  CAS  Google Scholar 

  16. Kimura Y, Takasm H, Nakazim H (1981) Isolation, identification and biological activities of 8-o-mythyle javanicin produced by Fusarium solani. Agric Biol Chem 45:2653–2654

    CAS  Google Scholar 

  17. Li GH, Yu ZF, Li X, Wang XB, Zheng LJ, Zhang KQ (2007) Nematicidal metabolites produced by the endophytic fungus Geotrichum sp. AL4. Chem Biodivers 4:1520–1524

    Article  PubMed  CAS  Google Scholar 

  18. Mahesh B, Tejesvi MV, Nalini MS et al (2005) Endophytic mycoflora of inner bark of Azadirachta indica A. Juss. Curr Sci 88:218–219

    Google Scholar 

  19. McGowan JE (2006) Resistance in nonfermenting gram-negative bacteria: multidrug resistance to maximum. Am J Med 119:S62–S70

    Article  Google Scholar 

  20. Medentsev A, Arinbasarova AY, Akimenko VK (2005) Biosynthesis of naphthoquinone pigments by fungi of the genus Fusarium. Appl Biochem Microbiol 41:503–507

    Article  CAS  Google Scholar 

  21. Rajagopal R, Suryanarayanan TS (2000) Isolation of endophytic fungi from leaves of neem (Azadirachta indica). Curr Sci 78:1375–1378

    Google Scholar 

  22. Schulz B, Boyal C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  23. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  PubMed  CAS  Google Scholar 

  24. Tan RX, Zau WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  PubMed  CAS  Google Scholar 

  25. Veitch GE, Beckmann E, Burke BJ, Boyer A, Ayats C, Ley SV (2007) A relay route for the synthesis of azadirachtin. Angew Chem Int Ed 46:7633–7635

    Article  CAS  Google Scholar 

  26. Veitch GE, Beckmann E, Burke BJ, Boyer A, Ayats C, Ley SV (2007) Synthesis of azadirachtin: a long but successful journey. Angew Chem Int Ed 46:7629–7632

    Article  CAS  Google Scholar 

  27. Verma VC, Gond SK, Kumar A, Kharwar RN, Strobel GA (2007) Endophytic mycoflora of leaf stem and bark tissues of Azadirachta indica A. Juss, from Varanasi India. Microb Ecol 54:119–125

    Article  PubMed  CAS  Google Scholar 

  28. Wu SH, Chen YW, Shao SC et al (2008) Ten-membered lactones from Phomopsis sp., an endophytic fungus of Azadirachta indica. J Nat Prod 71(4):731–734

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (R.N.K.) is thankful to the Department of Science and Technology, New Delhi, for award of a “BOYSCAST fellowship” [(SR/BY/L-02/06) 2006-2007] to study at MSU. Support from the NSF, a Howard Hughes professorship to Scott Strobel at Yale University, and the Montana Agricultural Experiment Station are also acknowledged. We thank Dr T.T. Lam at the W.M. Keck Foundation Biotechnology Laboratory at Yale University for the FT-ICR MS analyses. Financial support to other authors (R.N.K., V.C.V., S.K.G., A.K.) from CSIR and UGC is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra N. Kharwar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharwar, R.N., Verma, V.C., Kumar, A. et al. Javanicin, an Antibacterial Naphthaquinone from an Endophytic Fungus of Neem, Chloridium sp.. Curr Microbiol 58, 233–238 (2009). https://doi.org/10.1007/s00284-008-9313-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-008-9313-7

Keywords

Navigation