Skip to main content
Log in

Reduction of Selenite to Elemental Red Selenium by Pseudomonas sp. Strain CA5

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Pseudomonas sp. that may be useful in bioremediation projects was isolated from soil. The strain is of potential value because it reduces selenite to elemental red selenium and is unusual in that it was resistant to high concentrations of both selenate and selenite. Exposure of the strain to 50, 100, and 150 mM selenite reduced growth by 28, 57, and 66%, respectively, while no change in growth was observed when the strain was exposed to 64 mM selenate, the highest level tested. Cells of the strain removed 1.7 mM selenite from the culture fluid during a 7-day incubation. A selenite reductase with a molecular weight of ~115 kD was detected in cell-free extracts and a protein with a molecular weight of ~700 kD was detected that reduced both selenate and nitrate. The bacterial isolate is a strict aerobe, reducing selenite to elemental red selenium under aerobic conditions only. Pseudomonas sp. strain CA5 might be useful as an inoculum for bioreactors used to harvest selenium from selenite-containing groundwater. 16S rRNA gene sequence alignment and fatty acid analysis were used to identify the bacterium as a novel species of Pseudomonas related to P. argentinensis, P. flavescens, and P. straminea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Afkar E, Lisak J, Saltikov C, Basu P, Oremland RS, Stolz JF (2003) The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiol Lett 226:107–112

    Article  PubMed  CAS  Google Scholar 

  2. Avazeri C, Turner RJ, Pommier J, Weiner JH, Giordano G, Vermeglio A (1997) Tellurite and selenate reductase activity of nitrate reductases from Escherichia coli: correlation with tellurite resistance. Microbiology 143:1181–1189

    Article  PubMed  CAS  Google Scholar 

  3. Bledsoe TL, Cantafio AW, Macy JM (1999) Fermented whey—an inexpensive feed source for a laboratory-scale selenium-bioremediation reactor system inoculated with Thauera selenatis. Appl Microbiol Biotechnol 51:682–685

    Article  PubMed  CAS  Google Scholar 

  4. Chiong M, Gonzales E, Barra R, Vasquez C (1988) Purification and biochemical characterization of tellurite-reducing activities from Thermus thermophilus HB8. J Bact 170:3269–3273

    PubMed  CAS  Google Scholar 

  5. DeMoll-Decker H, Macy JM (1993) The periplasmic nitrite reductase of Thauera selenatis may catalyze the reduction of selenite to elemental selenium. Arch Microbiol 160:241–247

    CAS  Google Scholar 

  6. Di Gregorio S, Lampis S, Vallini G (2005) Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ Int 31:233–241

    Article  PubMed  CAS  Google Scholar 

  7. Dong Y, Zhang H, Hawthorn L, Ganther HE, Ip C (2003) Delineation of the molecular basis for selenium-induced growth arrest in human prostate cancer cells by oligonucleotide array. Cancer Res 63:52–59

    PubMed  CAS  Google Scholar 

  8. Eustice DC, Kull FJ, Shrift A (1981) Selenium toxicity: aminoacylation and peptide bond formation with selenomethionine. Plant Physiol 67:1954–1958

    Google Scholar 

  9. Euzéby J (2008) Validation List no. 121. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 58:1057

    Article  Google Scholar 

  10. Garbisu C, Ishii T, Leighton T, Buchanan BB (1996) Bacterial reduction of selenite to elemental selenium. Chem Geol 132:199–204

    Article  CAS  Google Scholar 

  11. Garbisu C, Carlson D, Adamkiewicz M, Yee BC, Wong JH, Resto E, Leighton T, Buchanan BB (1999) Morphological and biochemical responses of Bacillus subtilis to selenite stress. Biofactor 10:311–319

    Article  CAS  Google Scholar 

  12. Greenberg AE, Clesceri LS, Eaton AD (eds) (1992) Standard methods for the examination of water and wastewater, 18th edn. American Public Health Association, American Water Works Association, and Water Environmental Federation, Washington, DC, pp 82–93

    Google Scholar 

  13. Hildebrand DC, Palleroni NJ, Hendson M, Toth J, Johnson JL (1994) Pseudomonas flavescens sp. nov., isolated from walnut blight cankers. Int J Sys Bacteriol 44:410–415

    CAS  Google Scholar 

  14. Hunter WJ (2006) Removing selenate from groundwater with a vegetable oil-based biobarrier. Curr Microbiol 53:244–248

    Article  PubMed  CAS  Google Scholar 

  15. Hunter WJ (2007) An Azospira oryzae (syn Dechlorosoma suillum) strain that reduces selenate and selenite to elemental red selenium. Curr Microbiol 54:376–381

    Article  PubMed  CAS  Google Scholar 

  16. Hunter WJ, Follett RF, Cary JW (1997) Use of vegetable oil to stimulate denitrification and remove nitrate from flowing water. Trans Am Soc Agr Eng 40:345–353

    Google Scholar 

  17. Hunter WJ, Kuykendall LD (2006) Identification and characterization of an Aeromonas salmonicida (syn Haemophilus piscium) strain that reduces selenite to elemental red selenium. Curr Microbiol 52:305–309

    Article  PubMed  CAS  Google Scholar 

  18. Hunter WJ, Kuykendall LD (2007) Reduction of selenite to elemental red selenium by Rhizobium sp. strain B1. Curr Microbiol 55:344–349

    Article  PubMed  CAS  Google Scholar 

  19. Hunter WJ, Kuykendall LD, Manter DK (2007) Rhizobium selenireducens sp. nov.: a selenite reducing α-Proteobacteria isolated from a bioreactor. Curr Microbiol 55:455–460

    Article  PubMed  CAS  Google Scholar 

  20. Ike M, Takahashim K, Fujitam T, Kashiwa M, Fujita M (2000) Selenate reduction by bacteria isolated from aquatic environment free from selenium contamination. Wat Res 34:3019–3025

    Article  CAS  Google Scholar 

  21. Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R (1999) Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 65:4734–4740

    PubMed  CAS  Google Scholar 

  22. Kinkle BK, Sadowsky MJ, Johnstone K, Koskinen WC (1994) Tellurium and selenium resistance in rhizobia and its potential use for direct isolation of Rhizobium meliloti from soil. Appl Environ Microbiol 60:1674–1677

    PubMed  CAS  Google Scholar 

  23. Lund K, DeMoss JA (1976) Association-dissociation behavior and subunits structure of heat-released nitrate reductase from Escherichia coli. J Biol Chem 251:2207–2213

    PubMed  CAS  Google Scholar 

  24. Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799

    PubMed  CAS  Google Scholar 

  25. McCready RGL, Campbell JN, Payne JI (1966) Selenite reduction by Salmonella heidelberg. Can J Microbiol 12:703–714

    Article  PubMed  CAS  Google Scholar 

  26. Moore MD, Kaplan S (1992) Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J Bact 174:1505–1514

    PubMed  CAS  Google Scholar 

  27. Osborn AM, Moore ERB, Timmis KN (2000) An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2:39–50

    Article  PubMed  CAS  Google Scholar 

  28. Peix A, Berge O, Rivas R, Abril A, Velázquez E (2005) Pseudomonas argentinensis sp. nov., a novel yellow pigment-producing bacterial species, isolated from rhizospheric soil in Cordoba (Argentina). Int J Syst Evol Microbiol 55:1107–1112

    Article  PubMed  CAS  Google Scholar 

  29. Rosenberg B, Van Camp L, Kricas T (1965) Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205:698–699

    Article  PubMed  CAS  Google Scholar 

  30. Roux M, Sarret G, Pignot-Paintrand I, Fontecave M, Coves J (2001) Mobilization of selenite by Ralstonia metallidurans CH34. Appl Environ Microbiol 67:769–773

    Article  PubMed  CAS  Google Scholar 

  31. Schmidt MG, Konetzka WA (1986) Glutathion overproduction by selenite-resistant Escherichia coli. Can J Microbiol 32:825–827

    PubMed  CAS  Google Scholar 

  32. Seko Y, Imura N (1997) Active oxygen generation as a possible mechanism of selenium toxicity. Biomed Environ Sci 10:333–339

    PubMed  CAS  Google Scholar 

  33. Tomei FA, Barton LL, Lemanski CL, Zocco TG (1962) Reduction of selenate and selenite to elemental selenium by Wolinella succinogenes. Can J Microbiol 38:1328–1333

    Article  Google Scholar 

  34. Turner RJ, Weiner JH, Taylor DE (1998) Selenium metabolism in Escherichia coli. Biometals 11:223–227

    Article  PubMed  CAS  Google Scholar 

  35. Uchino M, Kosako Y, Uchimura T, Komagata K (2000) Emendation of Pseudomonas straminea Iizuka and Komagata 1963. Int J Syst Evol Microbiol 50:1513–1519

    PubMed  Google Scholar 

  36. U.S. EPA (2003) Ground water and drinking water: list of drinking water contaminants and MCLs. Available at: http://www.epa.gov/safewater/mcl.html#inorganic

  37. Weiss KF, Ayres JC, Kraft AA (1965) Inhibitory action of selenite on Escherichia coli, Proteus vulgaris, and Salmonella thompson. J Bact 90:857–862

    PubMed  CAS  Google Scholar 

  38. Yanke LJ, Bryant RD, Laishley EJ (1995) Hydrogenase (I) of Clostridium pasteurianum functions a novel selenite reductase. Anaerobe 1:61–67

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Robin Montenieri for expert assistance and the laboratory of Dr. Gary Bañuelos for assistance in obtaining soil samples. Manufacturer and product brand names are given for the reader’s convenience and do not reflect endorsement by the U.S. government. This article was the work of U.S. government employees engaged in their official duties and is exempt from copyright.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Hunter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunter, W.J., Manter, D.K. Reduction of Selenite to Elemental Red Selenium by Pseudomonas sp. Strain CA5. Curr Microbiol 58, 493–498 (2009). https://doi.org/10.1007/s00284-009-9358-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9358-2

Keywords

Navigation