Skip to main content

Advertisement

Log in

The Expression of a Recombinant cry1Ac Gene with Subtilisin-Like Protease CDEP2 Gene in Acrystalliferous Bacillus thuringiensis by Red/ET Homologous Recombination

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A novel cDNA encoding the subtilisin-like serine protease gene CDEP2 was isolated from Beauveria bassiana by reverse transcription polymerase chain reaction (RT-PCR). It contained an 1137 bp ORF that predicted a protein of 379 amino acids with M = 38863 Da and pI = 8.21. In an attempt to improve insecticidal activity, the CDEP2 gene and the cry1Ac gene from Bacillus thuringiensis were co-fused into the vector pHT315 as pHAc–CDEP2 plasmid by Red/ET homologous recombination. The co-fusion gene was attempted under the control of the native cry1Ac promoter. Plasmid pHAc–CDEP2 was electro-transformed into the B. thuringiensis subsp. kurstaki CryB. Analyzed by SDS-PAGE and Western blotting, the transformant CryB–pHAc–CDEP2 strain produced a 130 kDa Cry1Ac protein and 39 kDa CDEP2 protein. The 50% lethal concentration values (LC50) of CryB–pHAc–CDEP2 strain (8.5 μl/ml) to Helicoverpa armigera third instars larvae was clearly higher than the CryB–pHAc strain (16.7 μl/ml) at 72 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adang MJ, Staver MJ (1985) Characterized full-length and truncated plasmid clones of the crystal protein of Bacillus thuringiensis subsp. kurstaki HD-73 and their toxicity to Manduca sexta. Gene 36(3):289–300

    Article  PubMed  CAS  Google Scholar 

  2. Agaisse H, Lereclus D (1995) How does Bacillus thuringiensis produce so much insecticidal crystal protein? J Bacteriol 177:6027–6032

    PubMed  CAS  Google Scholar 

  3. Aronson A (2002) Sporulation and delta-endotoxin synthesis by Bacillus thuringiensis. Cell Mol Life Sci 59:417–425

    Article  PubMed  CAS  Google Scholar 

  4. Arvidson H, Dunn PE, Strnad S, Aronson AI (1989) Specificity of Bacillus thuringiensis for lepidopteran larvae: factors involved in vivo and in the structure of a purified protoxin. Mol Microbiol 3:1533–1543

    Article  PubMed  CAS  Google Scholar 

  5. Bosch D, Schipper B, Kleij D, Maagd RA, Stiekema WJ (1994) Recombinant Bacillus thuringiensis crystal proteins with new properties: possibilities for resistance management. Biotechnology 12:915–918

    Article  PubMed  CAS  Google Scholar 

  6. Charnley AK, St Leger RJ (1991) The role of cuticle-degrading enzymes in fungal pathogenesis in insects. In: Cole GT, Hoch HC (eds) The fungal spore and disease initiation in plants and animals. Plenum, London, pp 276–287

    Google Scholar 

  7. Chen XJ, Lee MK, Dean DH (1993) Site-directed mutations in a highly conserved region of Bacillus thuringiensis δ-endotoxin affect inhibition of short circuit current across Bombyx mori midguts. Proc Natl Acad Sci USA 90:9041–9045

    Article  PubMed  CAS  Google Scholar 

  8. Clarkson JM, Charnley AK (1996) New insights into mechanisms of fungal pathogenesis in insects. Trends Microbiol 4:197–204

    Article  PubMed  CAS  Google Scholar 

  9. Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813

    PubMed  CAS  Google Scholar 

  10. Diao JB, Lin Y, Tang JZ, Liang SP (2003) cDNA sequence analysis of seven peptide toxins from the spider Selenocosmia huwena. Toxicon 42:715–723

    Article  PubMed  CAS  Google Scholar 

  11. Ding XZ, Xia LQ (2001) Selection of a high toxic insecticide strain 4.0718 of Bacillus thuringiensis. Chin J Biol Control 17:163–166

    Google Scholar 

  12. Fang WG, Zhang YJ, Fei Y (2002) Cloning and characterization of cuticle degrading enzyme CDEP-1 from Beauveria bassiana. Chin J Genet 29:278–282

    CAS  Google Scholar 

  13. Guo SD, Cui HZ, Xia LQ, Wu DL, Ni WC, Zhang ZL, Zhang BL, Xu YJ (1999) Development of bivalent insect-resistant transgenic cotton plants. Scientia Agricultura Sinica 32:1–7

    Google Scholar 

  14. Ito T, Ikeya T, Sahara K (2006) Cloning and expression of two crystal protein genes, cry30Ba1 and cry44Aa1, obtained from a highly mosquitocidal train, Bacillus thuringiensis subsp. entomocidus INA288. Appl Environ Microbiol 72:5673–5676

    Article  PubMed  CAS  Google Scholar 

  15. Joshi L, St Leger RJ, Bidochka MJ (1995) Cloning of a cuticle-degrading protease from the entomopathogenic fungus, Beauveria bassiana. FEMS Microbiol Lett 125:211–218

    Article  PubMed  CAS  Google Scholar 

  16. Lereclus D, Arantes O (1989) Transformation and expression of a cloned δ-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol Lett 51:211–217

    PubMed  CAS  Google Scholar 

  17. Maagd RA, Weemen-Hendriks M, Stiekema W, Bosch D (2000) Bacillus thuringiensis delta-Endotoxin Cry1C domain III can function as a specificity determinant for Spodoptera exigua in different, but not all, Cry1–Cry1C Hybrids. Appl Environ Microbiol 66:1559–1563

    Article  PubMed  Google Scholar 

  18. McGauchey WH, Johnson DE (1992) Managing insect resistance to Bacillus thuringiensis toxin. Science 258:1451–1455

    Article  Google Scholar 

  19. Muyrers JPP, Zhang YM, Stewart AF (2001) Recombinogenic engineering: new options for cloning and manipulating DNA. Trends Biochem Sci 26:325–331

    Article  PubMed  CAS  Google Scholar 

  20. Oppert B (1999) Protease interactions with Bacillus thuringiensis insecticidial toxins. Arch Insect Biochem Physiol 42:1–12

    Article  PubMed  CAS  Google Scholar 

  21. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor New York, New York

    Google Scholar 

  22. St Leger RJ, Frank DC, Roberts DW, Staples RC (1992) Molecular cloning and regulatory analysis of the cuticle-degrading-protease structural gene from the entomopathogenic fungus Metarhizum anisopliae. Eur J Biochem 204:991–1001

    Article  PubMed  CAS  Google Scholar 

  23. St Leger RJ, Joshi L, Bidochka MJ, Roberts DW (1996) Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc Natl Acad Sci USA 93:6349–6354

    Article  PubMed  CAS  Google Scholar 

  24. St Leger RJ, Roberts DW (1997) Engineering improved mycoinsecticides. Tibtech March 15:83–85

    CAS  Google Scholar 

  25. Tellam RL (1996) The peritrophic matrix. In: Lehance MJ, Billingsley PF (eds) Biology of the insect midgut. Chapman & Hall, London, pp 86–108

    Google Scholar 

  26. Zhang YJ, Peng GX, Fang WG (2000) Induction of extracellular protease and subtilisin-like protease of Beauveria bassiana. Chin J Appl Environ Biol 6:182–186

    CAS  Google Scholar 

  27. Zhang YM, Buchholz F, Muyrers JPP (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20:123–128

    Article  PubMed  CAS  Google Scholar 

  28. Zhang YM, Muyrers JPP, Testa G (2000) DNA cloning by homologous recombination in Escherichia coli. Nat Biotech 18:1314–1317

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Zhang YM for technology support about Red/ET homologous recombination and helpful advice. This investigation was supported by a grant from National Natural Science Foundation of China (No: 30670052; 30870064), National 863 Project of China (No: 2006AA02Z187; 2006AA10A212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuezhi Ding.

Additional information

Liqiu Xia and Zhi Zeng contribute equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, L., Zeng, Z., Ding, X. et al. The Expression of a Recombinant cry1Ac Gene with Subtilisin-Like Protease CDEP2 Gene in Acrystalliferous Bacillus thuringiensis by Red/ET Homologous Recombination. Curr Microbiol 59, 386–392 (2009). https://doi.org/10.1007/s00284-009-9449-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9449-0

Keywords

Navigation