Skip to main content
Log in

Occurrence of Vibrio parahaemolyticus and Its Specific Phages from Shrimp Ponds in East Coast of India

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Vibrio parahaemolyticus is a natural microflora of marine and coastal water bodies and associated with mortality of larval shrimp in penaeid shrimp in ponds. Bacteriophages occur virtually in all places where their hosts exist. In this study, total distribution of V. parahaemolyticus and its phages were examined in shrimp ponds, seawater, estuary, animal surface, and tissues. Total vibrio count in sediments of two ponds was found to be 2.6 × 103 and 5.6 × 103 cfu/g. Incidence of V. parahaemolyticus in the ponds was close, while it was markedly higher in the animal surface and tissue samples. Biochemically identified eight strains of V. parahaemolyticus (V1, V3–V6, V9, V11, and V12) were taken for further infection studies with bacteriophage. Totally five bacteriophages capable of infecting V. parahaemolyticus MTCC-451 strain were isolated from all the samples. One of the isolated bacteriophage Vp1 from estuary was able to lyse all the isolated V. parahaemolyticus strains we used. Therefore, the morphology of Vp1 was estimated in TEM. Vp1 phage head measuring approximately about 50–60 nm diameter with icosahedral outline and a contractile tails of diameter 7 nm and length 100 nm and it was identified as Myoviridae. Therefore, the phages have the potential application in destroying bacterial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ackermann HW (1996) Frequency of morphological phage descriptions in 1995. Arch Virol 141:209–218

    Article  PubMed  CAS  Google Scholar 

  2. Ackermann HW (2007) 5500 Phages examined in the electron microscope. Arch Virol 152:227–243

    Article  PubMed  CAS  Google Scholar 

  3. Ackermann HW, Furniss A, Kasatiya SS, Lee JV, Mbiguino A, Newman FS, Takeya K (1983) Morphology of Vibrio cholerae typing phages. Ann Virol (Inst. Pasteur) 134 E:387–404

    Article  Google Scholar 

  4. Baross JA, Liston J, Morita RY (1978) Incidence of Vibrio parahaemolyticus bacteriophages and other vibrio bacteriophages in marine samplest. Appl Environ Microbiol 36(3):492–499

    PubMed  CAS  Google Scholar 

  5. Brock JA, LeaMaster B (1992) A look at the principal bacterial, fungal and parasitic diseases of farmed shrimp. In: Wyban J (eds) Proceedings of the special session on shrimp farming. World Aquaculture Society, Baton Rouge, LA, pp 212–222

  6. Chakrabarti AK, Ghosh AN, Saskar BL (1997) Isolation of Vibrio cholerae 0319 phages to develop a phage typing scheme. Indian J Med Res 105:254–257

    PubMed  CAS  Google Scholar 

  7. Chakraborty RD, Surendran PK (2008) Occurrence and distribution of virulent strains of Vibrio parahaemolyticus in seafoods marketed from Cochin (India). World J Microbiol Biotechnol 24:1929–1935

    Article  Google Scholar 

  8. Cheng Su Y, Liu Chengchu (2007) Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol 24(6):549–558

    Article  Google Scholar 

  9. Chowdhury NR, Chakraborty S, Ramamurthy T, Nishibuchi M, Yamasaki S, Takeda Y, Nair GB (2000) Molecular evidence of clonal Vibrio parahaemolyticus pandemic strains. Emerg Infect Dis 6:631–636

    Article  PubMed  CAS  Google Scholar 

  10. Duckworth D, Gulig P (2002) Bacteriophage: potential treatment for bacterial infections. Biodrugs 16(1):57–62

    Article  PubMed  CAS  Google Scholar 

  11. Gatesoupe FJ (1989) The effect of bacterial additives on the production rate and dietary value of rotifers as food for Japanese flounder Paralichthys olivaceus. Aquaculture 83:39–44

    Article  Google Scholar 

  12. Hara-Kudo Y, Nishina T, Nakagawa H, Konuma H, Hasegawa J, Kumagai S (2001) Improved method for detection of Vibrio parahaemolyticus in seafood. Appl Environ Microbiol 67(12):5819–5823

    Article  PubMed  CAS  Google Scholar 

  13. Harwood VJ, Gandhib JP, Wright AC (2004) Methods for isolation and confirmation of Vibrio vulnificus from oysters and environmental sources: a review. J Microbiol Methods 59:301–316

    Article  PubMed  CAS  Google Scholar 

  14. Karunasagar I, Pai R, Malathi GR, Karunasagar I (1994) Mass mortality of Penaeus monodon larvae due to antibiotic resistant Vibrio harveyi infection. Aquaculture 128:203–209

    Article  Google Scholar 

  15. Karunasagar I, Shivu MM, Girisha SK, Krohne G, Karunasagar I (2007) Biocontrol of pathogens in shrimp hatcheries using bacteriophages. Aquaculture 268:288–292

    Article  Google Scholar 

  16. Koga T, Toyoshima S, Kawata T (1982) Morphological varieties and host ranges of Vibrio parahaernolyticus bacteriophage isolated from seawater. Appl Environ Microbiol 44:466–470

    PubMed  CAS  Google Scholar 

  17. Lee CN, Lin JW, Chow TW, Tseng YH, Weng SF (2006) A novel lysozyme from Xanthomonas oryzae phage ΦXo411 active against Xanthomonas and Stenotrophomonas. Protein Expr Purif 50:229–237

    Article  PubMed  CAS  Google Scholar 

  18. Lindberg AA, Holme T (1969) Influence of 0 side chains on the attachment of the felix 0–1 bacteriophage to salmonella bacteria. J Bacteriol 99(2):513–519

    PubMed  CAS  Google Scholar 

  19. Mohney LL, Lightner DV (1994) An epizootic of vibriosis in Ecuadorian pond-reared Penaeus vannamei Boone (Crustacea: Decapoda). J World Aquacult Soc 25:116–125

    Article  Google Scholar 

  20. Myers ML, Panicker G, Bej AK (2003) PCR detection of a newly emerged pandemic Vibrio parahaemolyticus 03:K6 pathogen in pure cultures and seed waters from the Gulf of Mexico. Appl Environ Microbiol 69:2194–2200

    Article  PubMed  CAS  Google Scholar 

  21. Nakai T, Park SC (2002) Bacteriophage therapy of infectious disease in aquaculture. Res Microbiol 153:13–18

    Article  PubMed  Google Scholar 

  22. Pan TM, Wang TK, Lee CL, Chien SW, Horng CB (1997) Food-borne disease outbreaks due to bacteria in Taiwan, 1986 to 1995. J Clin Microbiol 35(5):1260–1262

    PubMed  CAS  Google Scholar 

  23. Park SC, Shimamura I, Fukunaga M, Mori KI, Nakai T (2000) Isolation of bacteriophages specific to a fish pathogen, Pseudomonas pleoglossicida, as a candidate for disease control. Appl Environ Microbiol 66(4):1416–1422

    Article  PubMed  CAS  Google Scholar 

  24. Pasharawipas T, Thaikua S, Sriurairatana S, Ruangpan L, Direkbusarakum S, Manopvisetcharean J, Flegel TW (2005) Partial characterization of a novel bacteriophage of Vibrio harveyi isolated from shrimp culture ponds in Thailand. Virus Res 114:63–69

    Article  PubMed  CAS  Google Scholar 

  25. Pettya NK, Evansa TJ, Finerana PC, Salmond GPC (2006) Biotechnological exploitation of bacteriophage research. Trends Biotechnol 25(1):7–15

    Article  CAS  Google Scholar 

  26. Prestel E, Salamitou S, DuBow MS (2008) An examination of the bacteriophages and bacteria of the Namib Desert. J Microbiol 46(4):364–372

    Article  PubMed  CAS  Google Scholar 

  27. Rattanachuay P, Kantachote D, Suntinanalert P (2007) Selection of proteolytic bacteria with ability to inhibit Vibrio harveyi during white shrimp (Litopenaeus vannamei) cultivation Songklanakarin. J Sci Technol 29(2):235–243

    Google Scholar 

  28. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  29. Seed KD, Dennis JJ (2005) Isolation and characterization of bacteriophages of the Burkholderia cepacia complex. FEMS Microbiol Lett 251:273–280

    Article  PubMed  CAS  Google Scholar 

  30. Sulakvelidze A, Alavize Z, Morris JGJ (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659

    Article  PubMed  CAS  Google Scholar 

  31. Suttle CA (2005) Viruses in the sea. Nature 437:356–361

    Article  PubMed  CAS  Google Scholar 

  32. Takahashi Y, Shimomaya Y, Momomaya K (1985) Pathogenicity and characteristics of Vibrio sp. isolated from cultured kuruma prawns Penaeus japonicus. Bate Bull Jpn Soc Sci Fish 51:721–730

    Google Scholar 

  33. Teunissen OSP, Faber R, Booms GH, Latscha RT, Boon JH (1998) Influence of vaccination on vibriosis resistance of the giant black tiger shrimp Penaeus monodon (Fabricius). Aquaculture 164:359–366

    Article  Google Scholar 

  34. Vinod MG, Shivu MM, Umesha KR, Rajeeva BC, Krohne G, Karunasagar I, Karunasagar I (2006) Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture 255:117–124

    Article  CAS  Google Scholar 

  35. Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    Article  PubMed  CAS  Google Scholar 

  36. Wood HE, Dawson MT, Devine KM, McConnell DJ (1990) Characterization of PBS-X, a defective prophage of Bacillus subtilis. J Bacteriol 172:2667–2674

    PubMed  CAS  Google Scholar 

  37. Zhilenkov EL, Popova VM, Popov DV, Zavalsky LY, Svetoch EA, Stern NJ, Seal BS (2006) The ability of flagellum-specific Proteus vulgaris bacteriophage PV22 to interact with Campylobacter jejuni flagella in culture. Virol J 3(50):1–5

    Google Scholar 

Download references

Acknowledgments

We thank our Director Prof. T. Balasubramanian for his kind cooperation and encouragement during our research. And we thank Prof. Puspha Viswanathan, Department of Electron Microscopy, Cancer institute, Chennai, India, for his interest and kind privilege to take photograph for this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. M. Alagappan or B. Deivasigamani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alagappan, K.M., Deivasigamani, B., Somasundaram, S.T. et al. Occurrence of Vibrio parahaemolyticus and Its Specific Phages from Shrimp Ponds in East Coast of India. Curr Microbiol 61, 235–240 (2010). https://doi.org/10.1007/s00284-010-9599-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9599-0

Keywords

Navigation