Skip to main content
Log in

Evidence for Two Promoters Internal to the Alginate Biosynthesis Operon in Pseudomonas aeruginosa

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

While much is known about the transcriptional regulation of the 12 gene alginate biosynthesis operon from the algD promoter in Pseudomonas aeruginosa, there has been little investigation into the possibility of other transcription starts within this operon, especially those genes dealing with the epimerization and acetylation of the alginate polymer. In this study, we utilized quantitative reverse transcription polymerase chain reaction, a β-galactosidase reporter assay and sequence scanning to identify two putative promoters within the alginate biosynthesis operon upstream of the alginate epimerase gene algG and the alginate acetylation gene algI. These data support the possibility of differential regulation within the operon to alter polymer structure under varying environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boucher JC, Schurr MJ, Deretic V (2000) Dual regulation of mucoidy in Pseudomonas aeruginosa and sigma factor antagonism. Mol Microbiol 36:341–351

    Article  PubMed  CAS  Google Scholar 

  2. Chitnis CE, Ohman DE (1990) Cloning of Pseudomonas aeruginosa algG, which controls alginate structure. J Bacteriol 172:2894–2900

    PubMed  CAS  Google Scholar 

  3. Chitnis CE, Ohman DE (1993) Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operonic structure. Mol Microbiol 8:583–593

    Article  PubMed  CAS  Google Scholar 

  4. DeVries CA, Ohman DE (1994) Mucoid-to-nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in algT, encoding a putative alternate sigma factor, and shows evidence for autoregulation. J Bacteriol 176:6677–6687

    PubMed  CAS  Google Scholar 

  5. Dische Z (1949) Spectrophotometric method for the determination of free pentose and pentose in nucleotides. J Biol Chem 181:379–392

    PubMed  CAS  Google Scholar 

  6. Ertesvåg H, Høidal HK, Schjerven H, Svanem BIG, Valla S (1999) Mannuronan C-5-epimerases and their application for in vitro and in vivo design of new alginates useful in biotechnology. Metab Eng 1:262–269

    Article  PubMed  Google Scholar 

  7. Franklin MJ, Chitnis CE, Gacesa P, Sonesson A, White DC, Ohman DE (1994) Pseudomonas aeruginosa AlgG is a polymer level alginate C5-mannuronan epimerase. J Bacteriol 176:1821–1830

    PubMed  CAS  Google Scholar 

  8. Franklin MJ, Ohman DE (2002) Mutant analysis and cellular localization of the AlgI, AlgJ and AlgF proteins required for O acetylation of alginate in Pseudomonas aeruginosa. J Bacteriol 184:3000–3007

    Article  PubMed  CAS  Google Scholar 

  9. Hestrin S (1949) The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine, and its analytical application. J Biol Chem 180:249–261

    PubMed  CAS  Google Scholar 

  10. Lee HJ, Jeon HJ, Ji SC, Yun SH, Lim HM (2008) Establishment of an mRNA gradient depends on the promoter: an investigation of polarity in gene expression. J Mol Biol 378:318–327

    Article  PubMed  CAS  Google Scholar 

  11. Marty N, Dournes JL, Chabanon G, Montrozier H (1992) Influence of nutrient media on the chemical composition of the exopolysaccharide from mucoid and non-mucoid Pseudomonas aeruginosa. FEMS Microbiol Lett 77:35–44

    Article  PubMed  CAS  Google Scholar 

  12. Mian FA, Jarman TR, Righelato RC (1978) Biosynthesis of exopolysaccharide by Pseudomonas aeruginosa. J Bacteriol 134:418–422

    PubMed  CAS  Google Scholar 

  13. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  14. Monday SR, Schiller NL (1996) Alginate synthesis in Pseudomonas aeruginosa: the role of AlgL (alginate lyase) and AlgX. J Bacteriol 178:625–632

    PubMed  CAS  Google Scholar 

  15. Nunez C, Moreno S, Soberon-Chavez G, Espin G (1999) The Azotobacter vinelandii response regulator AlgR is essential for cyst formation. J Bacteriol 181:141–148

    PubMed  CAS  Google Scholar 

  16. Pena C, Hernandez L, Galindo E (2006) Manipulation of the acetylation degree of Azotobacter vinelandii alginate by supplementing the culture medium with 3-(N-morpholino)-propane-sulfonic acid. Lett Appl Microbiol 43:200–204

    Article  PubMed  CAS  Google Scholar 

  17. Pier GB, Coleman F, Grout M, Franklin M, Ohman DE (2001) Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infect Immun 69:1895–1901

    Article  PubMed  CAS  Google Scholar 

  18. Rehm BHA, Valla S (1997) Bacterial alginates: biosynthesis and applications. Appl Microbiol Biotechnol 48:281–288

    Article  PubMed  CAS  Google Scholar 

  19. Singh S (1987) Mucoid strains of Pseudomonas aeruginosa are devoid of mannuronan C-5 epimerase. Microbios 51:7–13

    PubMed  CAS  Google Scholar 

  20. Steigedal M, Sletta H, Moreno S, Maerk M, Christensen BE, Bjerkan T, Ellingsen TE, Espin G, Ertesvag H, Valla S (2008) The Azotobacter vinelandii AlgE mannuronan C-5-epimerase family is essential for the in vivo control of alginate monomer composition and for functional cyst formation. Environ Microbiol 10:1760–1770

    Article  PubMed  CAS  Google Scholar 

  21. Suh SJ, Silo-Suh LA, Ohman DE (2004) Development of tools for the genetic manipulation of Pseudomonas aeruginosa. J Microbiol Methods 58:203–212

    Article  PubMed  CAS  Google Scholar 

  22. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  23. Vazquez A, Moreno S, Guzmán J, Alvarado A, Espín G (1999) Transcriptional organization of the Azotobacter vinelandii algGXLVIFA genes: characterization of algF mutants. Gene 232:217–222

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Sang-Jin Suh and Lynn F. Wood for their generous donation of plasmids pSS269 and pLW149a, respectively. We also thank Drs. Kimberly K. Jefferson and Jason A. Carlyon for use of their equipment. This study was supported by Veterans Administration Medical Research Grant I01BX000477 (D.E.O.) and Public Health Service Grant AI-19146 from the National Institute of Allergy and Infectious Disease (D.E.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis E. Ohman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 187 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paletta, J.L., Ohman, D.E. Evidence for Two Promoters Internal to the Alginate Biosynthesis Operon in Pseudomonas aeruginosa . Curr Microbiol 65, 770–775 (2012). https://doi.org/10.1007/s00284-012-0228-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0228-y

Keywords

Navigation