Skip to main content
Log in

Real-time Analysis of Metabolic Activity Within Lactobacillus acidophilus by Phasor Fluorescence Lifetime Imaging Microscopy of NADH

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Nicotinamide adenine dinucleotide (NADH) is an endogenous fluorescent molecule commonly used as a metabolic biomarker. Fluorescence lifetime imaging microscopy (FLIM) is a method in which the fluorescence decay is measured at each pixel of an image. While the fluorescence spectrum of free and protein-bound NADH is very similar, free and protein-bound NADH display very different decay profiles. Therefore, FLIM can provide a way to distinguish free/bound NADH at the level of single bacteria within biological samples. The phasor technique is a graphical method to analyse the entire image and to produce a histogram of pixels with different decay profile. In this study, NADH fluorescence decay profiles within Lactobacillus acidophilus samples treated using different protocols indicated discernible variations. Clear distinctions between fluorescence decay profiles of NADH in samples of artificially heightened metabolic activity in comparison to those of samples lacking an accessible carbon source were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Eriksson S, Hurme R, Rhen M (2002) Low–temperature sensors in bacteria. Philos Trans R Soc Lond B Biol Sci 357(1423):887–893. doi:10.1098/rstb.2002.1077

    Article  PubMed  CAS  Google Scholar 

  2. Armiger WB, Forro JF, Montalvo LM, Lee JF, Zabriskie DW (1986) The interpretation of on-line process measurements of intracellular NADH in fermentation processes. Chem Eng Commun 45(1–6):197–206. doi:10.1080/00986448608911383

    Article  CAS  Google Scholar 

  3. Reardon KF, Scheper T-H, Bailey JE (1987) Metabolic pathway rates and culture fluorescence in batch fermentations of Clostridium acetobutylicum. Biotechnol Prog 3(3):153–167. doi:10.1002/btpr.5420030307

    Article  CAS  Google Scholar 

  4. Tourkya B, Boubellouta T, Dufour E, Leriche F (2009) Fluorescence spectroscopy as a promising tool for a polyphasic approach to pseudomonad taxonomy. Curr Microbiol 58(1):39–46. doi:10.1007/s00284-008-9263-0

    Article  PubMed  CAS  Google Scholar 

  5. Stringari C, Cinquin A, Cinquin O, Digman MA, Donovan PJ, Gratton E (2011) Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proc Natl Acad Sci USA 108(33):13582–13587. doi:10.1073/pnas.1108161108

    Article  PubMed  CAS  Google Scholar 

  6. Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML (1992) Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci USA 89(4):1271–1275

    Article  PubMed  CAS  Google Scholar 

  7. Huttmann G, Konig IR, Orzekowsky-Schroder R, Rupp J, Shima K, Solbach W, Steven P, Szaszak M (2011) Fluorescence lifetime imaging unravels C. trachomatis metabolism and its crosstalk with the host cell. PLoS Pathog 7 (7):Special section p1–12. doi:10.1371/journal.ppat.1002108

  8. Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94(2):L14–L16. doi:10.1529/biophysj.107.120154

    Article  PubMed  CAS  Google Scholar 

  9. Wright BK, Andrews LM, Markham J, Jones MR, Stringari C, Digman MA, Gratton E (2012) NADH distribution in live progenitor stem cells by phasor-fluorescence lifetime image microscopy. Biophys J 103(1):L7–L9. doi:10.1016/j.bpj.2012.05.038

    Article  PubMed  CAS  Google Scholar 

  10. Stringari C, Edwards RA, Pate KT, Waterman ML, Donovan PJ, Gratton E (2012) Metabolic trajectory of cellular differentiation in small intestine by phasor fluorescence lifetime microscopy of NADH. Scientific Reports 2. doi:10.1038/srep00568

Download references

Acknowledgments

We appreciate the help of Krystyna Drozdowicz-Tomsia and Macquarie University for the use of the confocal microscope. KT thanks the University of Western Sydney for the Honours scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Phillips.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torno, K., Wright, B.K., Jones, M.R. et al. Real-time Analysis of Metabolic Activity Within Lactobacillus acidophilus by Phasor Fluorescence Lifetime Imaging Microscopy of NADH. Curr Microbiol 66, 365–367 (2013). https://doi.org/10.1007/s00284-012-0285-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0285-2

Keywords

Navigation