Skip to main content
Log in

A model of intracellular transport of particles in an axon

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper we develop a model of intracellular transport of cell organelles and vesicles along the axon of a nerve cell. These particles are moving alternately by processive motion along a microtubule with the aid of motor proteins, and by diffusion. The model involves a degenerate system of diffusion equations. We prove a maximum principle and establish existence and behavior of a unique solution. Numerical results show how the transportation of mass depends on the relevant parameters of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberts, B. et al.: Molecular Biology of the Cell. 3rd edition, Garland Publishing, New York, 1994

  2. Blum, J.J., Carr, D.D., Reed, M.C.: Theoretical Analysis of lipid transport in sciatic nerve. Biophysica et Biochimica Acta 1125, 313–320 (1992)

    Google Scholar 

  3. Blum, J.J., Reed, M.C.: The Transport of Organelles in Axons. Math. Biosci. 90, 233–245 (1988)

    Article  Google Scholar 

  4. Blum, J.J., Reed, M.C.: A Model for Slow Axonal Transport and its Application to Neurofilamentous Neuropathies. Cell Motility Cytoskeleton 12, 53–65 (1989)

    Article  Google Scholar 

  5. Brown, A.: Slow axonal transport: stop and go traffic in the axon. Nature Reviews Molecular Cell Biology 1, 153–156 (2000)

    Article  PubMed  Google Scholar 

  6. Chang, S., Svitkina, T.M., Borisy, G.G., Popov, S.V.: Speckle microscopic evaluation of microtubule transport in growing nerve processes. Nat. Cell Biol. Nov 1 (7), E171–3 (1999)

    Google Scholar 

  7. Friedman, A.: Partial Differential Equations. Krieger Publishing Company, Huntington, New York, 1976

  8. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations. Springer Verlag, 2nd edition, New York, 1983

  9. Gross, G.W., Beidler, L.M.: A quantitative analysis of isotope concentration profiles and rapid transport velocities in the C-fibers of the garfish olfactory nerve. J. Neurobiol. 6, 213–232 (1975)

    Article  PubMed  Google Scholar 

  10. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer Verlag, Berlin, 1994

  11. Odell, G.M.: Theories of axoplasmic transport. In: Lectures on the Mathematics in the Life Sciences. Am. Math. Soc., Providence, 1977, pp. 141–186

  12. Ölveczky, B.P., Verkman, A.S.: Monte Carlo Analysis of Obstructed Diffusion in Three Dimensions: Applications to Molecular Diffusion in Organelles. Biophys. J. 74, 2722–2730 (1998)

    PubMed  Google Scholar 

  13. Protter, M.H., Weinberger, H.F.: Maximum principles in differential equations. Prentice-Hall, Englewood Cliffs, N.J., 1967

  14. Reed, M.C., Blum, J.J.: Theoretical Analysis of radioactivity profiles during fast axonal transport: Effects of deposition and turnover. Cell Motility Cytoskeleton 6, 620–627 (1986)

    Article  Google Scholar 

  15. Rubinow, S.I., Bloom, J.J.: A theoretical approach to the analysis of axonal transport. Biophys. J. 30, 137–148 (1980)

    PubMed  Google Scholar 

  16. Seksek, O., Biwersi, J., Verkman, A.S.: Translational Diffusion of Macromolecule-sized Solutes in Cytoplasm and Nucleus. J. Cell Biol. 138, 131–142 (1997)

    Article  PubMed  Google Scholar 

  17. Smith, D.A., Simmons, R.M.: Models of Motor Assisted Transport of Intracellular Particles Biophys. J. 80, 45–68 (2001)

    Google Scholar 

  18. Takenaka, T., Gotoh, H.: Simulation of axoplasmic transport. J. Theoret. Biol. 107, 579–601 (1984)

    Google Scholar 

  19. Tsukita, S., Ishikawa, H.: The cytoskeleton of myelinated axons: serial section study. Biomedical Research 2, 424–437 (1981)

    Google Scholar 

  20. Vale, R.D., Reese, T.S., Sheetz, M.P.: Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985)

    Article  PubMed  Google Scholar 

  21. Vale, R.D., Schnapp, B.J., Reese, T.S., Sheetz, M.P.: Movement of organelles along filaments dissociated from the axoplasm of the squid giant axon. Cell 40, 449–454 (1985)

    Article  PubMed  Google Scholar 

  22. Wang, L., Brown, A.: Rapid intermittent movement of axonal neurofilaments observed by fluorescence photobleaching. Molecular Biology of the Cell 12, 3257–3267 (2001)

    PubMed  Google Scholar 

  23. Weiss, D.G., Gross, G.W.: Intracellular transport in nerve cell processes: The chromatographic dynamics of axoplasmic transport. In: Biological Structures and Coupled Flows, A. Oplatka, M. Balaban (eds.), Academic, New York, 1983, pp. 378–396

  24. Xu, Z., Tung, V.: Overexpression of neurofilament subunit M accelerates neurofilament transport. Brain Res. 866, 326–332 (2000)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avner Friedman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedman, A., Craciun, G. A model of intracellular transport of particles in an axon. J. Math. Biol. 51, 217–246 (2005). https://doi.org/10.1007/s00285-004-0285-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-004-0285-3

Mathematics Subject Classification (2000)

Key words or phrases

Navigation